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Praise for Data Mesh

Zhamak impressively addresses what any data-driven company needs to implement
data mesh at the culture, organizational, architectural, and technical levels to

deliver value at scale sustainably. Anyone who works in data must have
this book on their shelf and read it a couple of times. Like a good

movie, they will discover new subtleties over and over again.
—Andy Petrella, Founder of Kensu

In this book, Zhamak provides the nuance and detail that turns
data mesh from a compelling idea into a viable strategy for

putting data to work inside complex organizations.
—Chris Ford, Head of Technology, Thoughtworks Spain

With Data Mesh, Zhamak was able to bring together the technical and
organizational design practices that helped engineering organizations scale

and package them in a way that makes sense for the data and analytics space.
—Danilo Sato, Head of Data & AI for UK/Europe Thoughtworks

Data Mesh is a new concept, and data practitioners need to learn when
and how to implement it. Zhamak’s new book provides a good balance

of theory and practice that can guide engineers on their path and enable
them to make good design choices. The detailed approach in the book

makes this new concept clear and useful. The best part, though, are the
diagrams—sometimes a picture is worth more than 1,000 words.

—Gwen Shapira, Cofounder and CPO at Nile Platform;
Author of Kafka: The Definitive Guide



Data mesh is one of those concepts where we ask ourselves why
we weren’t doing this all along. This book will be our guide.

—Jesse Anderson, Managing Director Big Data Institute;
Author of Data Teams

Few concepts have produced as much discussion in the data
community as Data Mesh. In this book, Zhamak clearly lays

out the principles and demystifies Data Mesh for the practitioner.
—Julien Le Dem, Datakin CTO and OpenLineage project lead

A thorough and crucially needed overview of data as a product, including cultural,
process, technology, and team changes required to get there. A data-driven organization

needs a vibrant data mesh ecosystem where data products and teams emerge from
business needs, not centralized data lakes and pipelines where data goes to.

—Manuel Pais, Coauthor of Team Topologies

It’s exciting watching a new paradigm appear. I watched microservices, and
the underlying ideas, become mainstream and feel privileged to watch the building
blocks of Data Mesh appear. But unlike many incremental improvements, Zhamak

and her collaborators have transformed the underlying tension—between cross-cutting
analytical data and the decoupling goals that make microservices appealing—into a

transformative idea. What some may assume is merely a technical solution extends far
beyond that, reconciling long-standing impedance problems between business needs

and technology solutions. While complex, its multifaceted nature touches all parts
of modern software development and points the way to many future innovations.

—Neal Ford, Director/Software Architect/Meme Wrangler at
Thoughtworks; Author of Software Architecture: The Hard Parts

In Data Mesh: Delivering Data-Driven Value at Scale, Zhamak shows a new paradigm
encompassing technology and people to apply domain-driven thinking to analytics

data and data products, thus enabling to derive value from data in an iterative manner.
—Pramod Sadalage, Director, Data & DevOps, Thoughtworks

Data products invert the relationship between code and data, encapsulating the data
and the code which serves the data—what a clean way to distinguish between

data products used in analytics and microservices used for operations.
—Dr. Rebecca Parsons, CTO, Thoughtworks
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Foreword

I’ve been involved in developing software for large corporations for several decades,
and managing data has always been a major architectural issue. In the early days
of my career, there was a lot of enthusiasm for a single enterprise-wide data model,
often stored in a single enterprise-wide database. But we soon learned that having
a plethora of applications accessing a shared data store was a disaster of ad-hoc cou‐
pling. Even without that, deeper problems existed. Core ideas to an enterprise, such
as a “customer,” required different data models in different business units. Corporate
acquisitions further muddied the waters.

As a response, wiser enterprises have decentralized their data, pushing data storage,
models, and management into different business units. That way, the people who
best understand the data in their domain are responsible for managing that data.
They collaborate with other domains through well-defined APIs. Since these APIs
can contain behavior, we have more flexibility for how that data is shared and more
importantly, how we evolve data management over time.

While this has been increasingly the way to go for day-to-day operations, data analyt‐
ics has remained a more centralized activity. Data warehouses aimed to provide an
enterprise repository of curated critical information. But such a centralized group
struggled with the work and its conflicting customers, particularly since they didn’t
have a good understanding of the data or the needs of its consumers. A data lake
helped by popularizing access to raw data, allowing analysts to get closer to original
source, but too easily became a data swamp of poor understanding and provenance.

Data mesh seeks to apply the same lessons we learned with operational data to the
world of analytical data. Business unit domains become responsible for publishing
analytical data through APIs the same way they do for operational data. By treating
their data as a first class product, they communicate the meaning and provenance
of the data, and they collaborate with their consumers. To make the work involved
in this achievable, the enterprise needs to provide a platform for building and pub‐
lishing these data products, together with a federated governance structure to keep
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it all coherent. Pervading all of this is a recognition of the importance of technical
excellence so that the platforms and products can evolve swiftly as business needs
change.

Data mesh is thus at heart a rather simple, perhaps obvious, application of a well-
established data management principle to the world of analytical data. In practice,
however, there’s a great deal involved in making this work, particularly since so much
vendor investment has focused on centralized models, exacerbated by not supporting
the practices (such as testing, abstraction building, and refactoring) that developers of
operations systems know are essential for healthy software.

Zhamak has been at the sharp end of this, advising our clients on the path forward,
learning from their setbacks and triumphs, and nudging vendors into producing the
tools to make it easier to build these platforms. This book collects her and her collea‐
gues’ knowledge in this early but important stage of the adoption of data meshes
worldwide. I’ve learned a lot about these pragmatic difficulties while reviewing this
book, and I’m convinced that anyone who wants their organization to best utilize
their data resources will find this book charts out the best we understand of the path
forward.

— Martin Fowler
Chief Scientist, Thoughtworks
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Preface

Data mesh is the nudge that puts us on a new trajectory in how we approach data:
how we imagine data, how we capture and share it, and how we create value from
it, at scale and in the field of analytics and AI. This new trajectory moves us away
from the centralization of data and its ownership toward a decentralized model. This
new path embraces the complexity of our organizations, their rapid change, and their
continuous growth. It aims to enable organizations to get value from data at scale,
despite the messiness and organizational complexity.

Looking back through the history of our industry, we have been nudged before. The
birth of Unix and its philosophy to “Write programs that do one thing and do it well.
Write programs to work together …” was perhaps the butterfly flapping its wings that
set the conditions for us to tackle complexity at the heart of software, decades later,
through distributed architecture, service-oriented design, communications through
standard APIs, and autonomous domain team organization. I hope that data mesh
sets the condition for a new path to tackle complexity at the heart of data in the field
that needs it most, analytics and AI.

I formulated the thesis of data mesh in 2018, after observing common failure patterns
in getting value from data in large and technologically forward companies that had
made substantial investments in their data technologies. Observing their struggles
to scale data management solutions and organization to meet their ambitious data
aspirations led to questioning the decades-old assumptions in how we get value from
data: we collect it, we centrally store it, we put a data team in charge of it, and then
we unleash it on a diverse set of users and use cases. These assumptions had to be
revisited.

I shared the ideas behind data mesh in an O’Reilly conference in New York around
the same time. I called it “Beyond the Lake” as I was struggling to solve one of the
hardest problems in technology, “naming things.” Despite my fear of receiving harsh
criticism, as I was speaking sacrilegious words of fundamentally shifting our view
on data, the audience positively embraced the talk. The pains of data users—data
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analyst or scientist—were real; they were all struggling to get timely access to high
quality and trustworthy data. The pains of data engineers were shared, stuck in the
middle between data providers and data users, trying to get meaning out of data
from unreliable upstreams and put it in a form that others can use, and doing all
that without close contact with the business. The leaders in the audience nodded that
the returns on their data and analytics solutions were middling. I left that conference
feeling more confident about what could come beyond the lake. A few months later
I missed a week-long tech advisory board meeting in China. My three-year-old
daughter had broken a fever the night before the flight out of the US. I made it to
the plane, hiding my desperation separating from my sick kid for a week, but I broke
down as the pilot announced to the crew to secure the plane doors. I got off the
plane. Now I had a week to hide and put the thoughts and experience of data mesh
into words in an article called “How to Move Beyond a Monolithic Data Lake to a
Distributed Data Mesh”, kindly hosted by Martin Fowler. The article was a success
and received an incredible amount of readership, as if I had just said the words that
others were quietly thinking of. Three years on, this book goes into the depth of why,
what, and how to realize Data Mesh.

Why I Wrote This Book and Why Now
In the handful of years since the creation of data mesh, it has received tremendous
support from lead adopter companies implementing it. It has encouraged vendors to
attempt to adapt their products to suit data mesh implementations. It has created a
thriving learning community to share their experiences.

Despite such rapid movement, I’m perhaps writing this book a bit earlier than I
would have liked. We are still in the early years of a fundamentally different approach
in sharing and creating data for analytical and machine learning (ML) use cases.
But our industry has the tendency to percolate new concepts and buzzwords beyond
recognition. Hence, I decided to write this book to create a common foundation for
future evolutions of data mesh implementations. I wanted to make sure, before we
get carried away with building new technical solutions, we understand why we need
to make a change, what the problems we are trying to address are, and how we are
trying to do that.

This book creates a foundation of the objectives of data mesh, why we should bother,
its first principles. We look at how to apply the first principles to create a high-level
architecture and leave you with tools to execute its implementation and shift the
organization and culture.

xx | Preface
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Who Should Read This Book
This book is written for people with a diverse set of roles and skill sets. Data mesh is
a paradigm shift, and it needs the collective effort of many complementary roles and
disciplines to make it a reality for any organization, from architects, practitioners and
infrastructure engineers to product managers, data leaders, and executives.

Here is a quick summary of readers’ personas and what they can take away from this
book:

• Analytical data users such as data scientists and analysts should read this book to
understand what data mesh enables for them and how they become part of this
movement as an active member of the mesh, in turn, providing their insights and
inferences as new data products are shared on the mesh.

• Data providers, such as application teams or data engineers, should read this
book to understand how data mesh integrates the two planes of operational and
analytical data and applications. They will see and how their roles move into
cross-functional domain teams and what kind of architecture they will build to
enable data mesh.

• Infrastructure product owners, architects, and engineers should read this book
to understand the role and design of a self-serve data platform to create a
well-integrated set of services that enable data sharing decentrally at scale and by
cross-functional domain teams.

• Data governance teams should read this book to understand the new structure
and approach to achieving governance objectives in a way that is conducive to
independent domain ownership of data, removes organizational bottlenecks, and
relies heavily on automation and computation. This book introduces a new role
and shape for data governance.

• Data leaders, managers, and executives should read this book to understand the
paradigm shift that is coming and learn to formulate a data strategy based on
data mesh, execute its transformation, and cultivate their organization along the
way.

This book is written for people with backgrounds in traditional data and analytics,
and people who have been more focused on software and application delivery. Data
mesh closes the gap between these two groups.

If you come from a traditional data background, perhaps having been a data engineer
or data analyst, I encourage you to suspend your past biases. Be open to new ways
of solving the problem of analytical data management and processing. Embrace
computation and automation as an indispensable companion of data.
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If you come from an application development background, software architecture or
application infrastructure engineering, read this book with empathy for data and
analytics. See yourself as part of the solution for sharing data and getting value
from data to improve your applications. Imagine a new future where data work and
application development are two complementary pieces of making your solutions
successful.

How to Read This Book
I highly encourage you to start with the Prologue: Imagine Data Mesh. This short
chapter helps you feel and visualize what data mesh looks like in action. It demon‐
strates the impact of data mesh on a day-to-day basis. It shows the principles of data
mesh applied through a fictional story of a digital streaming company: Daff, Inc.

The rest of the book is structured into five parts:

Part I, “What Is Data Mesh?”
This part introduces each of the data mesh first principles and describes their
transformational impact. I do hope that everyone reads this section of the book
as the content here informs all discussions around data mesh to come.

Part II, “Why Data Mesh?”
If you are unsure that data mesh is the right choice for you, or if you want to
understand what problems it solves and how it solves them, or simply influence
others, read this part of the book. It compares data mesh to the past and discusses
why what has got us here won’t take us to the future. I encourage all readers to go
through this content.

Part III, “How to Design the Data Mesh Architecture”
This part is for all technologists, leaders, or practitioners. The chapters in this
part of the book focus on the high-level architecture of data mesh components.
They help you design your data mesh architecture as well as evaluate off-the-shelf
technologies for alignment with data mesh.

Part IV, “How to Design the Data Product Architecture”
This part goes into the detailed design of a core concept in data mesh, called a
data product. It intends to simplify complex concepts without compromising on
necessary details. It should be approachable for all roles, managers, leaders, or
practitioners. However, people who will be in a technical leadership position of
implementing various aspects of data mesh will get the most out of this part of
the book.

Part V, “How to Get Started”
This part is a guide for people in roles that influence the overall execution of
the data strategy and organizational change. It gives actionable advice on how to
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approach an evolutionary execution of a data mesh transformation, and how to
make organizational design decisions around team structure, incentives, culture,
and so on.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Bold
Used for data domain and data product names.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For almost 40 years, O’Reilly has provided technology and business training, knowl‐
edge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
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depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/data-mesh.

Send email to bookquestions@oreilly.com to comment or ask technical questions about
this book.

For more information about our books, courses, conferences, and news, see our
website at https://www.oreilly.com.

Find us on Facebook: https://facebook.com/oreilly

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia
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1 According to the US Bureau of Labor Statistics (BLS) data, only 25% of new businesses make it to 15 years or
more. These statistics haven’t changed much over time and have been fairly consistent since the 1990s.

2 The fictional company’s name, “Daff,” comes from the name of a Persian percussion instrument dating back
more than 3,000 years ago and still played today, as a symbol for something long-lasting.

3 Daff is inspired by my experience as a listener of Spotify. The examples of internal workings of the company
and its services are all fictional.

Prologue: Imagine Data Mesh

Imagination will often carry us to worlds that never were. But without it we go nowhere.
—Carl Sagan

Behind every successful company stand three, failed and forgotten. This is a ratio
by which the failures outnumber the survivors.1 In the age of AI, it is no curious
coincidence that the ones standing and leading have cracked the code of complexity,
embedded data-driven experimentation in every aspect of their business, embraced
continuous change in response to rapid learnings, and partnered with machine intel‐
ligence to understand reality beyond human logic and reasoning.

Daff, Inc.,2 a fictional global music and audio streaming company,3 is an example
of such a company. Daff has successfully delivered on its mission: “Connect artists
and listeners across the globe, in an immersive artistic experience, at every moment
of life.” Behind Daff ’s mission stands the company’s great expectations from data,
analytics, and machine intelligence, delivered through an approach known as data
mesh. Data mesh is the backbone of Daff ’s data strategy, architecture, and operating
model that has given them scale and speed to experiment, learn, and adapt using data
and machine learning (ML).

What I want to share with you is Daff ’s story after they have implemented data mesh.
Through the story of Daff you will learn the essence of data mesh. You will see data
mesh principles applied, its benefits demonstrated, its architecture in action, and the
organizational structure, up and running.
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I find the best way to introduce a complex phenomenon such as data mesh is with an
example. However, it’s too early in the life of data mesh to describe an example of a
company with a mature data mesh, as we are currently in the process of building the
first data meshes. Therefore, I’m describing a fictional organization that exhibits the
characteristics I would expect to see in a few years’ time. While we don’t expect that
reality will conform to our imagination, our vision of what we’re working toward is a
vital part of understanding what we are trying to achieve. To best convey this picture,
I’m writing about this fictional company as I would imagine it being featured in the
business press.

As I tell the story, I will leave footnotes for you to find your way to later chapters
that deep dive into the facets I briefly surface here. However, my intention is for you
to stay with me in the story and only fly off to the later chapters after you reach the
ending of this prologue.

Data Mesh in Action
It’s the year 2022.

Daff has demonstrated strong growth of its premium subscribers with a relentless
focus on a user experience utilizing machine learning. The company remains one of
the most loved feature-rich platforms that has used data to personalize an immersive
experience, curate an expansive library of content, and reach new and rising artists.
Daff has continuously evolved by adding new services and expanding into adjacent
domains of streaming podcasts, videos, and organizing events. Today, Daff operates
in almost every country worldwide with a growing ecosystem of local and global
business collaborators, from event and art venues to workout platforms.

Over the last three years, Daff has pivoted how they manage and use analytical data
to an approach called data mesh. Data mesh is a new approach to harnessing value
from analytical data at scale that aligns data and business closer than ever.

Daff has deployed sophisticated machine learning models that continuously exploit
patterns in a diverse and evolving set of data, internal and external to the organiza‐
tion. Daff has served its listeners with recommendations specialized to their taste,
mood, time of day, and location. Using data, they have empowered artists with targe‐
ted campaigns to help them grow their reach. They have the real-time pulse of their
adaptive business with business analytics, dashboards, reports, and visualization. This
is just the tip of the iceberg of how Daff gets value from their data.

Let’s take a walk around Daff to see how they do it.
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A Culture of Data Curiosity and Experimentation
One of the most notable changes in Daff is the ubiquitous culture that dares to
obsessively ask, “What if …”: what if we could make a change to make things just
a little bit better? There is a culture that obsessively runs experiments, observes the
results, analyzes the data, makes sense of it, learns from it, and adapts.

This culture is built on a technical foundation that has just made it so easy for
everyone to dare to try: try big experiments with applied machine learning or little
ones just tweaking user interface features.

Daff is organized around business units that it refers to as domains. The player
domain focuses on the core music player used on mobile devices, the partnership
domain works with business partners such as exercise applications and art venues,
and the playlist domain investigates advanced approaches for generating playlists.
Each domain combines software development and broader business capabilities and
is responsible for the software components that support that domain.

Walking around Daff you notice that at any point in time, there are many concurrent
experiments being run by each domain to improve their applications and services.
For example, player teams are continuously experimenting with better engagement
with users. The partnership domain team is experimenting with data captured from
a variety of external sources such as exercise platforms, art venues, etc. The playlist
teams keep applying more advanced machine learning in curating and recommend‐
ing engaging compilations. And the artist domain team is utilizing machine learning
to discover, attract, and onboard artists who normally would have gone unnoticed.

Every domain of the business and their collaborating technology teams have a deep
appreciation for meaningful, trustworthy, and secure data. Not only that, everyone
has an expectation that on-demand access to data across the organization is a norm.
They know their role in making that happen. They are all responsible for data and
have a stake in it.

Every domain is enthusiastically applying machine learning models wherever the
feature or the function of the domain can be implemented through the exploitation
of past data and patterns in it. For example, the playlist teams are using generative
machine learning models to create weird and wonderful compilations. The compi‐
lations are targeted for different activities, from running to focusing on learning.
The artist team is exploiting multiple datasets from social media and other agencies
outside of Daff to detect emerging artists and onboard, promote, and connect them
with their new audience.
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4 See Chapter 16, “Organization and Culture”, for a discussion on values, culture, incentives, and responsibili‐
ties in a data mesh organization, utilizing the Daff example introduced here.

You can feel the enthusiasm around data usage and learning a new reality that allows
for the creation and discovery of signals that would have been just noise to our
human senses.4

Data culture before data mesh
This culture vastly contrasts what Daff was three years ago. Data collection, experi‐
mentation, and intelligence were outsourced to a separate data team. The data team
was under sheer pressure. Domains did not have trust in the data, or often couldn’t
find the data they needed. The data team was always playing catchup, either chasing
the data pipeline havoc caused by every little change in upstream applications and
their databases or trying to meet the needs of the impatient domains needing a data
solution yesterday. The domains themselves had taken no responsibility and interest
in making data readily available, reliable, and usable. The lead time and friction to
get to the right data made it incredibly difficult for domains to dare imagine new
experiments.

Comparing the two experiences shows how far Daff has come in three years after
their pivot to data mesh.

An Embedded Partnership with Data and ML
The data experimentation culture just seems too good to be true. To see what it looks
like in practice, let’s follow the story of a recent data-driven business feature Daff has
worked on and follow the experience of the people involved.

Smart music playlists have been a successful feature of the Daff platform. The music
playlist domain has worked on multiple ML models that cross-correlate data from a
variety of sources to recommend better-matched playlists for listeners, depending on
where they are, what they’re doing, where their interest lies, and what the occasion is.

The playlist ML models exploit patterns in analytical data products from a variety of
sources across the organization such as:

• Data shared by the listener domain, listener profiles, listener social networks,•
listener locations, etc., to understand the context and cohorts of listeners.

• Data shared by the player domain, play sessions and play events, to understand•
the behavior and preferences of listeners on their player devices.

• Data from the music album domain, music tracks, and music profiles, to get an•
understanding of the profiles and classifications of music tracks.
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There are multiple trained machine learning models that generate smart playlists
such as monday playlists, sunday morning playlists, focus playlists, and so on.

The playlist team shares these continuously improved compilations as data products
to other teams. Data as a product is a well-established concept that refers to data
shared following Daff ’s established data sharing standards. Data products are auto‐
matically accessible through the global data discovery tool. They share and guarantee
a set of service-level objectives (SLOs), such as how often each playlist is refreshed,
its accuracy, and timeliness. They have up-to-date and easy to understand documen‐
tation. In short, data products are high-quality data available to users with the right
access permissions, and they are easy to understand and use.

The player domain team that focuses on the presentation of content to listeners
across different player user interfaces—such as mobile, desktop, car, etc.—is one of
the main users of the playlist data products. They continuously consume the latest
and greatest playlists and present them to the listeners.

The playlist team is planning to advance their models to recommend a new variety
of playlists for different sports activities, e.g., running playlists, cycling playlists, and
so on. They need to find existing data that has information about music that listeners
have liked and played during sports activities.

To get started, the playlist team goes to the mesh discovery portal and searches for
all data products that might have something related to sports activities. Through the
discovery mechanism they find that the partnership domain has some data related to
this. The discovery tool allows the team to automatically get access to documentation,
sample code, and more information about the data products. They automatically
request access and get a connection to the partnership data products and examine
sample datasets. While they find some useful data involving joint members (listeners
who are members of partner workout platforms), they don’t find any information
about the music they listen to or like on those platforms when they run, cycle, or do
yoga.

The playlist team gets in contact with the partnership data product owner. Each
domain has a dedicated product owner who focuses on the data shared by that
domain. Through a direct conversation they let the partnership team know that they
need to get access to the music tracks that workout platforms play during different
activities as well as the ones that their members like. This conversation leads to the
prioritization of creating partner playlists data products.

The partnership business team’s purpose is to create a better experience for listeners
through seamless integration with partner platforms such as the workout platforms
and sharing music. Creating partner playlists data products is aligned with their
business objective. The partnership team is best positioned to create these data
products. They work most closely with partner platforms and are aware of their

Prologue: Imagine Data Mesh | xxxi



5 Chapter 2, “Principle of Domain Ownership”, unpacks the long-term data product ownership in a data mesh
organization.

6 Chapter 3, “Principle of Data as a Product”, unpacks the concept of data sharing as a product across a data
mesh organization.

7 Chapter 4, “Principle of the Self-Serve Data Platform”, describes the purpose and characteristics of data mesh
infrastructure services as a self-serve platform.

integration APIs and the life cycle of those APIs, which directly feed the partner
playlists data products.

Given the self-serve data infrastructure and platform capabilities that Daff has built
over the course of the last three years, it is fairly simple for the partnership team to
create new data products. They start working with one of the most popular cycling
and workout partners and use their APIs to access the tracks their members have
played and liked.

The partnership team uses the platform data product life cycle management tools to
build the transformation logic that presents this data as a data product in multiple
modes, near-real-time snapshots of delta files initially. To make the integration of
partner playlists with other data products easier, the transformation code focuses on
harmonizing the music track ID with the global track ID system that Daff uses across
all data products. In the span of a few hours, they have the new partner playlists data
product built and deployed to the mesh, and made available to the playlist teams to
continue their experiment.

In this simple scenario there are a few fundamentals of data mesh principles at play:
one is the decentralized domain ownership of data5 to remove the gap between data
users and data providers, in this case allowing the playlist domain to work directly
with the partnership domain, with each team having long-term accountability for
providing data, playlists, and partner playlists.

The culture and technology of treating data as a product6 is the second principle of
data mesh we see in action. The teams have the responsibility to provide data that is
easily discoverable, understandable, accessible, and usable, known as data products.
There are established roles such as data product owners in each cross-functional
domain team that are responsible for data and sharing it successfully.

The feasibility of sharing new partner playlists data products in a span of a few
hours or maybe at most a day or two and the possibility of discovering the right data
and using it without friction are all dependent on the self-serve data platform.7 The
platform provides services to cross-functional teams for sharing and using data, and
it paves the path to efficiently and securely create and share data products for that
purpose. For example, automated access control, encryption of personal information
by default, and registering all data products with a global discovery tool are among
the platform services.

xxxii | Prologue: Imagine Data Mesh



8 Chapter 5, “Principle of Federated Computational Governance”, describes the operating model and approach
to establishing global policies across a mesh of data products.

Daff depends on a well-established set of governance policies to share data confi‐
dently and effectively. For example, a collective understanding around who should
own what data is an example of such a policy. In this case, the partnership team
became the owners of partner playlists. They are the team closest to the source
and control the relationship with the partners. They are closely aware of factors that
impact partnership data. While this appeared to be a simple and organic decision,
it was made based on a set of heuristics that Daff had established to govern the
policy of “assigning long-term owners to data products.” A federated group of domain
representatives defines the policies and the data platform automates them. This is
data mesh’s federated computational governance8 principle.

Daff has come a long way to arrive at this seamless and frictionless journey.
Figure P-1 shows this peer-to-peer and decentralized collaboration.

Figure P-1. Intelligent playlist creation scenario with data mesh
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9 Chapter 16, “Organization and Culture”, describes the intrinsic motivations of teams in sharing data.
10 Chapter 8, “Before the Inflection Point”, describes the nature of data teams before data mesh.

Data work before data mesh
The same scenario three years ago would have faced weeks of work, many points
of friction and bottlenecks, and multiple handovers across multiple teams, likely
resulting in poor quality data. Three years ago, the expected length of the effort and
all the friction likely inhibited the initiative from starting, leaving it abandoned or in
the best case costing a lot more.

Three years ago, the playlist team would have needed to ask a central data and AI
team to prioritize building and training a new model for sports playlists. The data
scientists within the central data and AI team would have needed to prioritize this
among many other ML-based initiatives demanded across the organization. In the
best-case scenario of highly prioritizing the playlists request, the data scientists would
have had to go to a centralized lake or warehouse team for data and request access to
the data from a centralized governance team.

This would have added another few days. Even then, after finding the data, it was
likely that data scientists couldn’t quite understand the data. The data would have
been stale, as the partnership team had established many new integrations that hadn’t
yet made it to the central warehouse or lake. The central data scientist team likely had
trust issues with the data.

After realizing that data scientists needed more music-related data from partners, the
data lake team would have needed to go to a data engineering team in charge of
pipelines to get the new extract, transform, load/extract, load, transform (ETL/ELT)
pipelines set up to get data from partner integration APIs and get them to the
warehouse or lake, yet another backlog to get stuck behind.

The centralized data engineering teams had to spend days negotiating and under‐
standing a completely new domain, the partnership domain, to get the data from
their application databases into the pipeline and then into the lake. They had to
understand their internal databases to map internal music IDs to the global ID,
among other internal application nuances. This would have taken some more time.

Without direct involvement and understanding of the business case, the partnership
team had low incentives to prioritize high-quality partnership music integration9 and
support the data engineers’ ETL pipelines. The ad hoc integrations faced days of
debugging until some data flew into the lake. And the saga continues.

Daff ’s functionally divided organizational design and technology was simply not
conducive to data-driven experimentation.10
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11 Chapter 8, “Before the Inflection Point”, goes into detail about the bottlenecks and inadequacies of existing
architectural and organizational approaches for today’s businesses.

Figure P-2 shows Daff ’s organizational structure and architecture before data mesh.
They had a modern software development architecture and organization structure
as they had aligned their business and technology development teams around auton‐
omous domains. However, their data and analytics team and architecture were func‐
tionally divided and centralized, using the monolithic architecture of the lake and
warehouse.

The central data team and the monolithic architecture had become a bottleneck in
response to the proliferation of data sources—inside and outside of the company—
and diversity of their use cases. The data team had been under a large amount of
pressure and had substantially slowed down in response to the growth of Daff. The
returns of investments had now plateaued.

In short, Daff ’s data team structure and architecture were out of step with its aspira‐
tions and organizational growth.11

Figure P-2. Daff’s organization and architecture before data mesh
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12 Chapter 10, “The Multiplane Data Platform Architecture”, describes the different planes of the platform with
further details.

The Invisible Platform and Policies
Post data mesh, in the sports playlist scenario I just shared with you, the experience of
data users and providers almost feels magical: no friction, rapid end-to-end results, a
sense of shared accountability with clear boundaries of responsibilities.

For this to be remotely possible, Daff has created a set of self-service technologies and
automations that feel native to use and almost invisible.

Beneath the experience of the data providers and data users, to rapidly and autono‐
mously share data, sits a platform composed of self-service capabilities that enable a
set of key experiences:

The experience of building, deploying, monitoring, and evolving data products
In this example, the data platform facilitated a frictionless experience to create
and evolve partner playlists and sports playlists data products in a short
amount of time, including integration with the source, building and testing the
data transformation code, and serving the data.

The experience of working with a mesh of data products as a whole
In this case, the platform services enable searching and discovering data prod‐
ucts, connecting to them, querying their data, subscribing to their evolving data
changes, and joining and correlating multiple data products to create new and
novel playlists.

These experience-based capabilities of the platform are optimized for the users—data
product developers, owners, users—to minimize their cognitive load in data sharing
and experimentation.

For Daff, it is not acceptable to optimize the users’ experience—data product devel‐
opers and users—at the cost of machine deoptimization. The invisible part of the
platform, closer to the physical layer and further away from the user, takes care of
physical and machine optimizations. While the platform’s experience plane—a set
of cohesive services—optimizes the user experience to work with autonomous and
yet connected data products, the utility plane of the platform optimizes physical and
machine-level performance.12 For example, it supports:

• Efficient polyglot storage of data products•
• Efficient query and workload processing across data products•
• Efficient search and indexing•
• Reduced data movement•
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13 Part IV, “How to Design the Data Product Architecture”, describes shared facets of data products as an
architectural quantum on the mesh.

14 Chapter 11, “Design a Data Product by Affordances”, describes the design and affordances of data quantum.

The seamless experience of the playlist team using and correlating multiple data
products sourced from different teams such as partnerships, listeners, and music
profiles depends on a set of global standard policies governing all data products:13

• Standardization of data sharing APIs•
• Standardization of metadata including SLOs, documentation, and data modeling•

language
• Standardization of shared data entity IDs•

Limitless Scale with Autonomous Data Products
Data mesh meets Daff ’s growth aspirations with a scale-out organizational and tech‐
nical structure. As you saw in the example of smart playlists, the introduction of new
playlists or improving existing ones is simply a matter of adding more data products
and connecting them, e.g., running playlists, cycling playlists, workout platform
X partner playlists, workout platform Y partner playlists, etc. This is a scale-out
architecture where you can achieve limitless scale by adding more coequal nodes and
connecting them with each other. Data products are implemented as an architecture
quantum, the smallest unit of an architecture that can be deployed independently and
still have all the structural components to do its job.

The architecture assures that each data product implements a standard set of con‐
tracts for data access and data sharing in a way that each can connect to other data
quanta on the mesh to share data and semantics. Each data product encapsulates
the data transformation logic and policies that govern their data. The architecture
matches the domain-oriented organizational autonomy, with a corresponding data-
product-oriented distributed architecture.

Daff ’s standardization of data products has given it speed and scale.14

The Positive Network Effect
The success of Daff in using data and analytics can be summarized by the positive
network effect created by peer-to-peer connectivity of domains exchanging data
products as units of value. The larger the network and the more connections estab‐
lished, the more data that is shared between domains to generate intelligence and
high-order insights, ultimately improving the business.

Daff has invested significantly to execute its data mesh strategy, making an organiza‐
tional and cultural shift and creating the infrastructure and platform foundation. But
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15 See Chapter 15, “Strategy and Execution”, on how to measure and monitor the progress of the data mesh
execution.

16 Chapter 6, “The Inflection Point”, goes into the main industry-wide drivers that demand a new approach in
managing and using data, similar to the ones mentioned for Daff here.

they have been diligent in tracking the return of their investment with measurable
benefits.

Based on their measurements, externally, they have created deeper user engagement
and have grown the number of active listeners by applying ML and data to improve
the listeners’ experience across multiple touchpoints. Internally, they have reduced
the lead time to access data by removing central and middleman bottlenecks. They
have reduced the risk of change of data by creating standard contracts and interfaces
for discovering and sharing data products. They have reduced the waste of devel‐
oping data products by adopting automated continuous delivery practices for data
products. They have increased the application of data across the business measured
by the amount of connectivity between their data products. They have increased
the number of teams engaged in creating data-driven solutions by embedding the
ownership of data in each domain and team. They reduced the cost of data ownership
and end-to-end data solution creation by utilizing the platform services and focusing
on the experience of data developers.

These are some of the areas of improvement that they measure against their data
mesh investments.15

Why Transform to Data Mesh?
Let’s go back to the year 2019, the year of an inflection point for Daff.16

Over the last few years, Daff had substantially invested in their data solutions such
as data lakes and data warehousing to capture data at scale. They had built a large
data and AI team under the chief data and AI officer who had been charged with
organizational-wide data capture, modeling, and serving, as well as building analyti‐
cal and ML solutions the business needed. The organizational structure and operating
model that Daff had adopted was the industry standard at the time.

This was the year that Daff reflected and realized that their data aspirations had
outgrown their ability to execute on them. The central data team and the monolithic
architecture had become a bottleneck in response to the proliferation of data sour‐
ces—inside and outside of the company—and diversity of their use cases. The data
team was under a large amount of pressure and had substantially slowed down in
response to the growth of Daff. The returns of investments had now plateaued.

They needed to change, and that was when they discovered data mesh.
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17 Part V, “How to Get Started”, introduces a self-assessment tool to evaluate whether data mesh is the right
approach for a company or not, at the time of this writing.

Before embarking on data mesh, Daff looked closely at the alignment between their
business—goals, organization, technical capabilities—and data mesh.

The expected outcomes of data mesh were aligned with addressing their pain points:

Rapid growth and increased complexity
They were growing fast, their business was becoming more complex, and imple‐
menting their diverse and audacious analytical aspirations was becoming slow.
Data mesh is designed to get value from data and retain agility in complex and
large environments.

Getting value from data at scale
They were making substantial investments on their technical foundation for
data and analytics and yet the results were plateauing. Data mesh gets value
from data more cost effectively by mobilizing the larger population of generalist
technologists to become data developers and users.

The objectives of data mash and the overall scope of the impact sounded promising.
However, there was a question of whether this was the right choice for them, right
now, given the context of Daff.

The answer to this question was promising.

Data mesh was compatible with the existing domain-oriented organizational design
of Daff. It was an extension to their existing design and architecture. Data mesh built
up on a decentralized model of data ownership that simply extended their existing
business-aligned development teams.

In reality, the centralized data team was one of the last functionally divided teams,
somewhat at odds with their current domain-oriented business and tech organiza‐
tional design. Given their aspirations to make every domain data-driven and embed
intelligent decision making in them, it made sense to move the ownership of data
and analytics to domains. The company was already operating with business-dev-ops
domain-aligned teams, so the extension of these teams with data capabilities and
responsibilities seemed like a natural progression to truly democratize access and
utilization of data. Naturally, governance needed to follow these organizational seams
too.

They knew that as a lead adopter of data mesh, they needed to dedicate their time
and resources to building the foundational technology and enabling platforms. Daff
viewed itself as a software company with technology at its core, not only enabling
its business but shaping and extending it. They didn’t shy away from technical
investments.17
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18 This would have been a long novel if I included their multiyear journey. However, if you want to read
about the execution and transformation approach see Chapter 15, “Strategy and Execution”, and Chapter 16,
“Organization and Culture”.

19 Chapter 15, “Strategy and Execution”, introduces an approach to establishing data mesh in an evolutionary
transformation.

Daff realized that implementing a new approach—encompassing changes to data
culture, data organizational structure, data roles, data architecture, and technology—
was going to be a multiyear transformation.

So, they dedicated the next three years to make the pivot to data mesh incrementally.
Throughout the journey they delivered carefully selected data-driven use cases, while
transforming the organization and establishing the platform and the technology.18

The Way Forward
Despite the business, cultural, and technical successes, Daff has a way to go. Their
evolution of data mesh execution has certainly passed the phases of exploration,
which established the ways of working and the foundational platform. They have
expanded the mesh to many of their domains. However, to continue to extract value
from the mesh, they need to continuously optimize and refine their approach. They
need to work on domains that are laggards in becoming active members of the mesh
and extend their platform capabilities to domains that work with legacy systems and
don’t yet work in a domain-oriented cross-functional team.

This is the expected trajectory of data mesh transformation: an evolutionary path,
punctuated with repeating cycles of explore, expand, and extract.19

I hope the tale of data mesh at Daff has nudged you to keep reading past this point, in
which case I will see you in the next chapter.
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PART I

What Is Data Mesh?

. . .the only simplicity to be trusted is the simplicity to be found on the far side of complexity.
—Alfred North Whitehead

When you look at the application of data mesh, like the Daff, Inc., example from
the opening of the book, you get a sense of the engineering and organizational
complexity required to implement it. We could probably talk about these complex
and intricate pieces of data mesh implementation for a while. Instead, to under‐
stand data mesh, I like to discuss it from its first principles. Once we understand
its basic elements, then we can assemble them from the ground up to create the
implementations.

This is how I’m going to introduce data mesh to you in this part of the book, focusing
on its first principles and how they interact with each other.

These principles are propositions and values that guide the behavior, structure,
and evolution of its implementations. My intention for this part of the book is to
create a foundation that provides a baseline for future refinements of practices and
technology.

It’s worth considering that this book is being written at the time when data mesh
is arguably still in the innovator and early adopter phase of an innovation adoption
curve.1 It’s at a phase where the venturesome innovators have embraced it and are
already in the process of creating tools and technologies around it, and the highly
respected early adopters are shifting their data strategy and architecture inspired by



data mesh. Hence, it’s only appropriate to include an articulation of principles and
architectural style in my explanation of data mesh at this point in time and leave
the specific implementation details and technology to be refined and built over time.
I anticipate that any specific implementation design or tooling suggestion will be
simply outdated by the time you get to read this book.

I’ve organized this part into five chapters. Chapter 1, “Data Mesh in a Nutshell”, gives
you a quick overview of its four principles and their composition into a high-level
model. The following chapters each focus on one of the principles: Chapter 2, “Prin‐
ciple of Domain Ownership”, Chapter 3, “Principle of Data as a Product”; Chapter 4,
“Principle of the Self-Serve Data Platform”; and Chapter 5, “Principle of Federated
Computational Governance”.

The order in which the principles are introduced matter, because they build on each
other. The domain-oriented distribution of data ownership and architecture is at the
heart of the approach. Everything else follows from that. Data mesh is all of these
principles.

I suggest that every reader who is interested in understanding or applying data mesh
read this part. I hope that what this part offers informs every conversation about data
mesh.



CHAPTER 1

Data Mesh in a Nutshell

“Think in simples” as my old master used to say—meaning to reduce the whole to its parts in
simplest terms, getting back to first principles.

—Frank Lloyd Wright

Data mesh is a decentralized sociotechnical approach to share, access, and man‐
age analytical data in complex and large-scale environments—within or across
organizations.

Data mesh is a new approach in sourcing, managing, and accessing data for analytical
use cases at scale. Let’s call this class of data analytical data. Analytical data is used for
predictive or diagnostic use cases. It is the foundation for visualizations and reports
that provide insights into business. It is used to train machine learning models
that augment business with data-driven intelligence. It is the essential ingredient
for organizations to move from intuition and gut-driven decision making to taking
actions based on observations and data-driven predictions. Analytical data is what
powers the software and technology of the future. It enables a technology shift
from human-designed rule-based algorithms to data-driven machine-learned models.
Analytical data is becoming an increasingly critical component of the technology
landscape.

The term data in this book, if not qualified, refers to analytical
data. Analytical data serves reporting and machine learning train‐
ing use cases.
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1 Chapter 7 unpacks the expected outcomes of data mesh, with a high level of description of how it achieves
those outcomes.

The Outcomes
To get value from data at scale in complex and large-scale organizations, data mesh
sets to achieve these outcomes:

• Respond gracefully to change: a business’s essential complexity, volatility, and•
uncertainty

• Sustain agility in the face of growth•
• Increase the ratio of value from data to investment1•

The Shifts
Data mesh introduces multidimensional technical and organizational shifts from
earlier analytical data management approaches.

Figure 1-1 summarizes the shifts that data mesh introduces, compared to past
approaches.

Data mesh calls for a fundamental shift in the assumptions, architecture, technical
solutions, and social structure of our organizations, in how we manage, use, and own
analytical data:

• Organizationally, it shifts from centralized ownership of data by specialists who•
run the data platform technologies to a decentralized data ownership model
pushing ownership and accountability of the data back to the business domains
where data is produced from or is used.

• Architecturally, it shifts from collecting data in monolithic warehouses and lakes•
to connecting data through a distributed mesh of data products accessed through
standardized protocols.

• Technologically, it shifts from technology solutions that treat data as a byproduct•
of running pipeline code to solutions that treat data and code that maintains it as
one lively autonomous unit.

• Operationally, it shifts data governance from a top-down centralized operational•
model with human interventions to a federated model with computational poli‐
cies embedded in the nodes on the mesh.

• Principally, it shifts our value system from data as an asset to be collected to data•
as a product to serve and delight the data users (internal and external to the
organization).

4 | Chapter 1: Data Mesh in a Nutshell



• Infrastructurally, it shifts from two sets of fragmented and point-to-point inte‐•
grated infrastructure services—one for data and analytics and the other for
applications and operational systems to a well-integrated set of infrastructure for
both operational and data systems.

Figure 1-1. Data mesh dimensions of change
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2 Jeff Hawkins and Sandra Blakeslee (2005). On Intelligence (p. 165). New York: Henry Holt and Co.

Since the introduction of data mesh in my original blog post (kindly hosted by
Martin Fowler), I have noticed that people have struggled to classify the concept.
Is data mesh an architecture? Is it a list of principles? Is it an operating model?
After all, we rely on the classification of patterns2 as a major cognitive function to
understand the structure of our world. Hence, I have decided to classify data mesh
as a sociotechnical paradigm: an approach that recognizes the interactions between
people and the technical architecture and solutions in complex organizations. This is
an approach to data management that not only optimizes for the technical excellence
of analytical data sharing solutions but also improves the experience of all people
involved: data providers, users, and owners.

Data mesh can be utilized as an element of an enterprise data strategy, articulating the
target state of both the enterprise architecture and an organizational operating model
with an iterative execution model.

In the simplest form it can be described through four interacting principles. In this
chapter I give a very brief definition of these principles and how they work together.

The Principles
Four simple principles can capture what underpins data mesh’s logical architecture
and operating model. These principles are designed to progress us toward the objec‐
tives of data mesh: increase value from data at scale, sustain agility as an organization
grows, and embrace change in a complex and volatile business context.

Here is a quick summary of the principles.

Principle of Domain Ownership
Decentralize the ownership of analytical data to business domains closest to the
data—either the source of the data or its main consumers. Decompose the (analyti‐
cal) data logically and based on the business domain it represents, and manage the
life cycle of domain-oriented data independently.

Architecturally and organizationally align business, technology, and analytical data.

The motivations of domain ownership are:

• The ability to scale out data sharing aligned with the axes of organizational•
growth: increased number of data sources, increased number of data consumers,
and increased diversity of data use cases
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• Optimization for continuous change by localizing change to the business•
domains

• Enabling agility by reducing cross-team synchronizations and removing central‐•
ized bottlenecks of data teams, warehouses, and lake architecture

• Increasing data business truthfulness by closing the gap between the real origin•
of the data, and where and when it is used for analytical use cases

• Increasing resiliency of analytics and machine learning solutions by removing•
complex intermediary data pipelines

Principle of Data as a Product
With this principle in place, domain-oriented data is shared as a product directly with
data users—data analysts, data scientists, and so on.

Data as a product adheres to a set of usability characteristics:

• Discoverable•
• Addressable•
• Understandable•
• Trustworthy and truthful•
• Natively accessible•
• Interoperable and composable•
• Valuable on its own•
• Secure•

A data product provides a set of explicitly defined and easy to use data sharing
contracts. Each data product is autonomous, and its life cycle and model are managed
independently of others.

Data as a product introduces a new unit of logical architecture called data quan‐
tum, controlling and encapsulating all the structural components needed to share
data as a product—data, metadata, code, policy, and declaration of infrastructure
dependencies—autonomously.

The motivations of data as a product are to:

• Remove the possibility of creating domain-oriented data silos by changing the•
relationship of teams with data. Data becomes a product that teams share rather
than collect and silo.

• Create a data-driven innovation culture, by streamlining the experience of dis‐•
covering and using high-quality data, peer-to-peer, without friction.
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• Create resilience to change with built-time and run-time isolation between data•
products and explicitly defined data sharing contracts so that changing one does
not destabilize others.

• Get higher value from data by sharing and using data across organizational•
boundaries.

Principle of the Self-Serve Data Platform
This principle leads to a new generation of self-serve data platform services that
empower domains’ cross-functional teams to share data. The platform services are
centered around removing friction from the end-to-end journey of data sharing,
from source to consumption. The platform services manage the full life cycle of
individual data products. They manage a reliable mesh of interconnected data prod‐
ucts. They provide mesh-level experiences such as surfacing the emergent knowledge
graph and lineage across the mesh. The platform streamlines the experience of data
users to discover, access, and use data products. It streamlines the experience of data
providers to build, deploy, and maintain data products.

The motivations of the self-serve data platform are to:

• Reduce the total cost of decentralized ownership of data.•
• Abstract data management complexity and reduce the cognitive load of domain•

teams in managing the end-to-end life cycle of their data products.
• Mobilize a larger population of developers—technology generalists—to embark•

on data product development and reduce the need for specialization.
• Automate governance policies to create security and compliance standards for all•

data products.

Principle of Federated Computational Governance
This principle creates a data governance operating model based on a federated
decision-making and accountability structure, with a team composed of domain
representatives, data platform, and subject matter experts—legal, compliance, secu‐
rity, etc. The operating model creates an incentive and accountability structure that
balances the autonomy and agility of domains, with the global interoperability of the
mesh. The governance execution model heavily relies on codifying and automating
the policies at a fine-grained level, for every data product, via the platform services.

The motivations of federated computational goovernance are:

• The ability to get higher-order value from aggregation and correlation of inde‐•
pendent yet interoperable data products
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• Countering the undesirable consequences of domain-oriented decentralizations:•
incompatibility and disconnection of domains

• Making it feasible to build in cross-cutting governance requirements such•
as security, privacy, legal compliance, etc., across a mesh of distributed data
products

• Reducing the overhead of manual synchronization between domains and the•
governance function

Interplay of the Principles
I intended for the four principles to be collectively necessary and sufficient. They
complement each other, and each addresses new challenges that may arise from
others. Figure 1-2 shows the interplay of the principles.

Figure 1-2. Four principles of data mesh and their interplay
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For example, decentralized domain-oriented ownership of data can result in data
siloing within domains, and this can be addressed by the data as a product principle
that demands domains have an organizational responsibility to share their data with
product-like qualities inside and outside of their domain.

Similarly, the domain ownership of data products can lead to duplicated effort,
increased cost of data product ownership, and lowered data sharing productivity. In
this case, the self-serve data platform empowers the cross-functional domain teams
in sharing and using data products. The platform objective is to lower the domain
teams’ cognitive load, reduce unnecessary effort, increase domains’ productivity, and
lower the total cost of ownership.

Data Mesh Model at a Glance
Operationally you can imagine the principles in action as demonstrated in Figure 1-3.

Figure 1-3. Operating model of data mesh principles
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The domains with cross-functional teams are achieving the business domain’s goals
with digital applications and data products. Each domain shares its data and services
through contracts. Data products can be composed and owned by new domains. The
global policies are defined by a federated group composed of representatives of the
domains. The policies along with other platform services are offered as automated
capabilities.

This is a simplified operating model of data mesh.

The Data
Data mesh focuses on analytical data. It recognizes the blurry delineation of the
two modes of data, introduces a new model of tight integration of the two, and yet
respects the clear differences between them.

“What is operational data versus analytical data?” This has been a point of confusion
for early enthusiasts of data mesh. Allow me to clarify what I mean by these terms.

Operational Data
Operational data supports running the business and keeps the current state of the
business with transactional integrity. This data is captured, stored, and processed by
transactions in real time, by OLTP (online transaction processing) systems.

Operational data sits in databases of microservices, applications, or systems of
records that support business capabilities. It keeps the current state of the business.

Operational data modeling and storage are optimized for application or microservice
logic and access patterns. It is constantly updated, with read and write access to it. Its
design has to account for multiple people updating the same data at the same time in
unpredictable sequences, which results in a need for transactions. The access is also
about relatively in-the-moment activity.

Operational data is referred to as “data on the inside”. It is the private data of an
application or a microservice that performs CRUD (create, update, delete) operations
on it. Operational data can be intentionally shared on the outside through APIs—e.g.,
REST, GraphQL, or events. The operational data on the outside has the same nature
as the operational data on the inside: it is what we know about the business, now.

Operational data is recording what happens in the business, supporting decisions that
are specific to the business transaction. In short, operational data is used directly to
run the business and serve the end users.

The Data | 11
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3 Definition provided by William H. Inmon, known as the father of data warehousing.

Imagine Daff. Its listener registration service implements the business function of
subscribing new users or unsubscribing them. The transactional database that sup‐
ports the registration process and keeps the current list of subscribers is considered
operational data.

Today, operational data is collected and then transformed into analytical data. Ana‐
lytical data trains the machine learning models that then make their way into the
operational systems as intelligent services.

Analytical Data
This is the historical, integrated, and aggregate view of data created as the byproduct
of running the business. It is maintained and used by OLAP (online analytical
processing) systems.

Analytical data is the temporal, historic, and often aggregated view of the facts of
the business over time. It is modeled to provide retrospective or future-perspective
insights. Analytical data is optimized for analytical logic—training machine learning
models and creating reports and visualizations. Analytical data is part of the “data on
the outside” category, data directly accessed by analytical consumers.

Analytical data has a sense of history. Analytical use cases require looking for com‐
parisons and trends over time, while a lot of operational uses don’t require much
history.

Analytical access mode tends to include intensive reads across a large body of data,
with fewer writers. The original definition of analytical data as a nonvolatile, integra‐
ted, time-variant collection of data3 still remains valid.

In short, analytical data is used to optimize the business and user experience. This is
the data that fuels the organization’s AI and analytics aspirations.

For example, in the case of Daff it’s important to optimize the listeners’ experience
with playlists recommended based on their music taste and favorite artists. The
analytical data that helps train the playlist recommendation machine learning model
captures all the past behavior of the listener as well as all characteristics of the music
the listener has favored. This aggregated and historical view is analytical data.

Today, analytical data is stored in a data warehouse or lake.
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The Origin
To reject one paradigm without simultaneously substituting another is to reject science
itself.

—Thomas S. Kuhn, The Structure of Scientific Revolutions

Thomas Kuhn, an American historian and philosopher of science, introduced the
paradigm shift in his at the time rather controversial book, The Structure of Scien‐
tific Revolutions (1962). He observed how science progressed in two main modes:
incremental and revolutionary; science progressed through long stretches of legato
normal science where the existing theories form the foundation of all further research,
followed by the occasional disruption of staccato paradigm shifts that challenged and
transcended the existing knowledge and norm. For example, the progress of science
from Newtonian mechanics to quantum mechanics is considered a paradigm shift as
scientists could no longer explain the governing laws of physics at the quantum level
with the existing theories. Kuhn recognized that a prerequisite for a paradigm shift
is identifying anomalies, observations that don’t fit the existing norm, and entering
the phase of crisis, questioning the validity of the existing paradigm in solving the
new problems and observations. He also observed that people try, with increasing
desperation, to introduce unsustainable complexities into the existing solutions to
account for anomalies.

This almost perfectly fits the origin of data mesh and its principles. It came from the
recognition of anomalies—failure modes and accidental complexities that I describe
in Part I—and moments of crisis where the characteristics of the existing data solu‐
tions didn’t quite fit the realities of enterprises today. We are in a moment of Khunian
crisis in the progression of our approach for data. Hence, there is a need for a new
paradigm.

I wish I could claim that data mesh principles were novel and new and I cleverly
came up with them. On the contrary, the principles of data mesh are a generalization
and adaptation of practices that have evolved over the last two decades and proved
to solve our last complexity challenge: scale of software complexity led by the mass
digitization of organizations.

These principles are the foundation of how digital organizations have solved organi‐
zational growth and complexity, while delivering unprecedented digital aspirations:
moving all of their services to the web, using mobile for every single touchpoint with
their customers, and reducing organizational synchronizations through automation
of most activities. They are an adaptation of what formulated the previous paradigm
shift in software: the microservices and APIs revolution, platform-based Team Top‐
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4 Matthew Skelton and Manual Pais (2019). Team Topologies: Organizing Business and Technology Teams for Fast
Flow. Portland, OR: IT Revolution.

5 Scott W. Rose, Oliver Borchert, Stuart Mitchell, and Sean Connelly (2020). “Zero Trust Architecture”, Special
Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD.

ologies,4 computational governance models such as Zero Trust Architecture,5 and
operating distributed solutions securely and across multiple clouds and hosting envi‐
ronments. In the last several years, these principles have been refined and adapted to
the analytical data problem space.

Let’s look more closely at each of the data mesh principles.
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CHAPTER 2

Principle of Domain Ownership

Data mesh, at its core, is founded in decentralization and distribution of data responsi‐
bility to people who are closest to the data. This is to support a scale-out structure and
continuous and rapid change cycles.

The question is how to identify the boundaries around which the data is decom‐
posed, how to integrate those components, and, consequently, how to distribute the
responsibilities.

To find the axis of data decomposition, data mesh follows the seams of organizational
units. It follows the lines of division of responsibility aligned with the business. It does
not follow the borders set by the underlying technology solutions, such as the lake,
warehouse, pipelines, etc., nor the functional lines, data team, or analytics team.

The data mesh approach is contrary to how existing data architectures are parti‐
tioned and data responsibility is divided. Chapter 8 demonstrates that traditional
data architectures are partitioned around technology, e.g., data warehouses, and give
data ownership to teams performing activities related to the technology, e.g., the
data warehouse team, data pipeline team, etc. The traditional architectures mirror
an organizational structure that centralizes the responsibility of sharing analytical
data to a single data team. The previous approaches have been set up to localize
the complexity and cost of dealing with a relatively new field of analytical data
management within a specialized group.

The past approach in how organizations divide data responsibility is at odds with
the organizational structure of modern digital businesses. Organizations today are
decomposed based on their business domains. Such decomposition localizes the
impact of continuous change and evolution, for the most part, to a domain. For
example, Daff has divided its business (and its digital solutions enabling and shaping
the business) into domains such as podcast, event, partnership, listener, etc.
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Data mesh gives the data sharing responsibility to each of the business domains. Each
domain becomes responsible for the data it is most familiar with: the domain that
is the first-class user of this data or is in control of its point of origin. For example,
the listener team is in charge of listener profiles, listener demographics, listener
subscription events, and any other analytical data they have the most understanding,
influence, and control of. I call this the principle of domain ownership.

I have used the word ownership as a shorthand for product own‐
ership: long-term ownership of responsibilities to create, model,
maintain, evolve, and share data as a product to meet the needs of
data users.
All the appearances of data ownership in this book are limited
and scoped to the accountability of organizations to maintain the
quality, longevity, and lawful accessibility of the data they generate
in transactions with internal and external entities such as users,
customers, and other organizations.
This should not be confused with data sovereignty, control of data
by whom it is collected from. The ultimate sovereignty of data
remains with the users, customers, or other organizations whose
data is being captured and managed. The organizations act as data
product owners while the individuals remain the data owners.
The concept of self-sovereign data—individuals having full control
and authority over their personal data—is close and dear to my
heart but outside of the scope of this work. However, I’m of the
firm belief that data mesh can establish a foundation toward self-
sovereign data, but that would be the topic of a different book.
I have also refrained from phrases such as data custodianship that
carry a specific and different meaning from past data management
and governance methods. This is to avoid confusion with existing
data governance roles that are not compatible with data mesh.

This rather intuitive division of responsibility solves a host of problems that I will
cover in depth in Chapter 7, “After the Inflection Point”, but it introduces new chal‐
lenges. It leads to a distributed logical data architecture—distributed architectures
are scalable but are more complex to manage. It requires new ways of handling
data interoperability and connectivity between domains. The future chapters and
principles address these challenges.

In the following section, I unpack how to apply domain-driven design (DDD) strate‐
gies to decompose data and its ownership and introduce the transformational shifts
necessary for organizations to move to domain-oriented data ownership.
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1 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, (Upper Saddle River, NJ:
Addison-Wesley, 2003).

A Brief Background on Domain-Driven Design
Domain-driven design is an approach to decomposition of software design (models)
and team allocation, based on the seams of a business. It decomposes software based
on how a business decomposes into domains, and models the software based on the
language used by each business domain.

Eric Evans introduced the concept in his book Domain-Driven Design in 2003. In
the time since, DDD has deeply influenced modern architectural thinking and,
consequently, organizational modeling. DDD was a response to the rapid growth
of software design complexity that stemmed from the digitization of businesses. As
organizations grew their digital assets—backoffice applications, digital services, web
and mobile technologies—and kept increasing their features, software became more
complex and harder to manage. As the book’s subtitle, “Tackling Complexity in the
Heart of Software,” specifies, we needed a new approach to software modeling and
ownership.

DDD defines a domain as “a sphere of knowledge, influence, or activity.”1 In the
Daff example, the listener subscription domain has the knowledge of what events
happen during the subscription or unsubscription, what the rules governing the
subscription are, what data is generated during the subscription events, and so on.
The subscription domain influences exactly how subscriptions should be done and
what data should be known and captured during the subscription process. It has a set
of activities to perform such as onboarding listeners, triggering payments, etc. What
I like to add to this description is the outcome. The domain has a specific business
objective and an outcome it is optimizing for. The subscription domain is optimizing
for the outcome of maximizing the number of subscribers and an easy onboarding
process and minimizing dropouts.

Domain-driven design, and the idea of breaking software modeling based on
domains, has greatly influenced the software architecture of the last decade, for
example with microservices. Microservices architecture decomposes large and com‐
plex systems into distributed services built around business domain capabilities. It
delivers user journeys and complex business processes through loose integration of
services.

Domain-driven design has fundamentally changed how technology teams form and
has led to the alignment of business and technology cross-functional teams. It has
greatly influenced how organizations scale, in a way that a team can independently
and autonomously own a domain capability and digital services.
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I highly recommend that you familiarize yourself with DDD using resources outside
of this book before applying its concepts to data. Defining DDD with enough depth
to detail how it can be utilized with data mesh is outside of the scope of this book.

Applying DDD’s Strategic Design to Data
Though we have adopted domain-oriented decomposition and ownership when deal‐
ing with operational systems, ideas of decomposition based on business domains
have yet to penetrate the analytical data space.

So far, the closest application of DDD in data platform architecture I have seen is
for source operational systems to emit their business domain events and for the
monolithic data platform to ingest them. However, beyond the point of ingestion
the domain team’s responsibility ends, and data responsibilities are transferred to
the data team. As more transformations are performed by the data team, the data
becomes more removed from its original form, language, and intention. For example,
Daff ’s podcast domain emits logs of podcasts being played on a short-retention log.
Then downstream, a centralized data team will pick these events up and attempt to
transform, aggregate, and store them as long-lived files or tables.

To apply DDD to data I suggest going back to the original scripture. In his book, Eric
Evans introduces a set of complementary strategies to scale modeling at the enterprise
level called DDD’s Strategic Design. These strategies are designed for organizations
with complex domains and many teams. DDD’s Strategic Design techniques move
away from the previously used modes of modeling and ownership:

Organizational-level central modeling
Eric Evans observed that total unification of the domain models of the organiza‐
tion into one is neither feasible nor cost-effective. This is similar to the data
warehouse approach to data modeling, with tightly dependent shared schemas.
Centralized modeling leads to organizational bottlenecks for change.

Silos of internal models with limited integration
This mode introduces cumbersome interteam communications. This is similar to
data silos in different applications, connected via brittle extract, transform, load
procedures (ETLs).

No intentional modeling
This is similar to a data lake, dumping raw data into blob storage.

Instead, DDD’s Strategic Design embraces modeling based on multiple models each
contextualized to a particular domain, called a bounded context.
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A bounded context is “the delimited applicability of a particular model [that] gives
team members a clear and shared understanding of what has to be consistent and
what can develop independently.”2

Additionally, DDD introduces context mapping, which explicitly defines the relation‐
ship between bounded contexts, the independent models.

Data mesh adopts the boundary of bounded contexts to individual data products—
data, its models, and its ownership.

For organizations that have already adopted a microservices or domain-oriented
architecture, this is a relatively simple extension. They have built services based
on the domain bounded contexts. Now, they apply the same decomposition and
modeling to their analytical data in each domain.

Domain data ownership is the foundation of scale in a complex system like enterpri‐
ses today.

Let’s put this in an example for Daff. There is a media player team that is responsible
for mobile and web digital media players. The media player application emits play
events that show how listeners interact with the player. The data is used for many
downstream use cases, including improving the player application’s performance and
improving user engagement by reconstructing and analyzing the listener sessions,
the longitudinal journey of discovering and listening to music.

In the absence of a data mesh implementation, the media player team basically
dumps the play events—with whatever quality and cadence they arrive from the
player devices—on some sort of a short-retention streaming infrastructure or worse
in its transactional database. Then these events get picked up by the centralized data
team to be put into a lake or warehouse or likely both.

Data mesh changes the behavior of the media player domain. It extends the responsi‐
bility of the media player team to providing a high-quality long-retention analytical
view of the play events—real-time and aggregated. The media player team now has
the end-to-end responsibility of sharing the play events analytical data directly with
the data analysts, data scientists, or other people who are interested in the data. The
play events analytical data is then transformed by the listener session domain and
aggregated into a journey-based view of the listener interactions.

The recommendation domain uses the listener sessions to create new datasets—
graphs to recommend music based on the play behavior of listeners’ social networks.

In this example, the listener session domain is purely a data domain with the sole
objective of providing the best representation of listeners’ journeys when interacting
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with players, augmented with unique information about listeners’ profiles. In this
case, the need for this data has reshaped the organization. It has created a new
domain and a new long-standing team. Figure 2-1 summarizes this example.

Figure 2-1. Decomposing the analytical data ownership and architecture, aligned with
existing or new business domains

Domain Data Archetypes
When we map the data mesh to an organization and its domains, we discover a few
different archetypes of domain-oriented analytical data. Data mesh principles don’t
differentiate greatly between the archetypes of domains. However, at a practical level,
recognizing their characteristics helps with optimizing the implementations.

There are three archetypes of domain-oriented data:

Source-aligned domain data
Analytical data reflecting the business facts generated by the operational systems.
This is also called a native data product.

Aggregate domain data
Analytical data that is an aggregate of multiple upstream domains.
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Consumer-aligned domain data
Analytical data transformed to fit the needs of one or multiple specific use cases.
This is also called fit-for-purpose domain data.

Figure 2-2 expands on our previous example and demonstrates the archetypes of the
domain-oriented data. For example, the media player domain serves source-aligned
analytical data collected from the media player application events. The listener
session domain serves aggregate data products that transform and aggregate individ‐
ual listener player events into constructed sessions of interaction, augmented with
more information about the listener fetched from the listener domain. And the
recommendation domain data is consumer-aligned. It serves the specific needs of the
intelligent recommendations offered by the player application.

Figure 2-2. Example of domain data archetypes

Source-Aligned Domain Data
Some domains naturally align with the source, where the data originates. Source-
aligned domain data represents the facts and reality of the business. It captures the
data that is mapped very closely to what the operational systems of its origin, systems
of reality, generate. In our example, facts of the business such as “how users are
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3 A technique to observe internal database operations (insert, update, delete) and externalize them as events.
4 Creating materialized views on top of an operational application database for external queries and workloads.

interacting with the media players” or “how users subscribe” lead to the creation of
source-aligned domain data such as play events, audio play quality streams, and
listener profiles. These facts are best known and generated by their corresponding
operational systems. For example, the media player system knows best about play
events.

In summary, data mesh assumes that domains are responsible for providing the
truths of their business domain as source-aligned domain data.

The business facts are best presented as business domain events and can be stored
and served as distributed logs of time-stamped events. In addition to timed events,
source-aligned domain data often needs to be provided in easily consumable histori‐
cal slices, aggregated over a time interval that closely reflects the interval of change
in the business domain. For example, in the listener domain, a daily aggregate of the
listener profiles is a reasonable model for analytical usage.

Note that source-aligned analytical data is not modeled or accessed directly from the
source application’s (private) transactional database. Exposing analytical data directly
from the operational database is an antipattern. This antipattern is observed in the
implementation of ETLs and application of change data capture3 and data virtualiza‐
tion4 on top of the application’s database. The application database model serves a
very different purpose and is often modeled for speed of performing transactions
as needed by the application and its end users. The analytical data is stored and
structured for ease of understanding and access for reporting, machine learning
training, and nontransactional workloads.

The analytical data life cycle is different from the source application’s operational
database. Not every change to optimize the application database leads to analytical
data changes, and not every new transformation of analytical data requires changes to
its source application database.

The nature of the domain analytical data is different from the internal data that the
operational systems use to do their job. Chapter 1 captures the differences between
the two data types.

For these reasons, at this point in time, data mesh differentiates between the source
application’s operational database and its collaborating analytical data storage. While
the two types of data are considered separate, they are tightly integrated and owned
by the same domain team.

Source-aligned domain data is the most foundational archetype. It is expected to
be permanently captured and made available. As the organization evolves, its data-
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5 “Control over Master Data values and identifiers that enable consistent use, across systems, of the most
accurate and timely data about essential business entities. The goals of MDM include ensuring availability
of accurate, current values while reducing risks associated with ambiguous identifiers (those identified with
more than one instance of an entity and those that refer to more than one entity).” DAMA International,
DAMA-DMBOK: Data Management Body of Knowledge, 2nd Edition (p. 356). (Basking Ridge, NJ: Technics
Publications, 2017).

driven and intelligence services can always go back to the business facts and create
new aggregations or projections.

Note that source-aligned domain data closely represents the raw data at the point of
creation and is not fitted or modeled for a particular consumer. The other domain
data archetypes are.

Aggregate Domain Data
There is never a one-to-one mapping between a core concept of a business and a
source system at an enterprise scale. There are often many systems that can serve
parts of the data that belong to a shared business concept. Hence there might
be a lot of source-aligned data that ultimately needs to be aggregated into a more
aggregate form of a concept. For example, attributes that define “subscribers,” “songs,”
or “artists” can be mapped from many different points of origin. For example, the
listeners domain can have profile-related information about subscribers, while the
player domain knows about their music preferences. There are use cases, such as
marketing or sales, that demand a holistic view of the subscriber. This demands new
long-standing aggregate data representing multiple facets of listeners that compose
data from multiple source-aligned domains.

I strongly caution you against creating ambitious aggregate domain
data—aggregate domain data that attempts to capture all facets of a
particular concept, like listener 360, and serve many organization-
wide data users. Such aggregates can become too complex and
unwieldy to manage, difficult to understand and use for any partic‐
ular use case, and hard to keep up-to-date. In the past, the imple‐
mentation of Master Data Management (MDM)5 has attempted to
aggregate all facets of shared data assets in one place and in one
model. This is a move back to single monolithic schema modeling
that doesn’t scale.
Data mesh proposes that end consumers compose their own fit-for-
purpose data aggregates and resist the temptation of highly reusable
and ambitious aggregates.
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Consumer-Aligned Domain Data
Some domains align closely with consuming use cases. Consumer-aligned domain
data, and the teams that own it, aim to satisfy one or a small group of closely related
use cases. For example, recommendations are created as fit-for-purpose data that is
presented to listeners while they interact with the player app.

Engineered features to train machine learning models often fall into this category. For
example, Daff introduces a machine learning model that analyzes the sentiment of a
song, e.g., positive or negative. Then it uses this information for music recommenda‐
tions and rankings. However, to perform sentiment analysis on a piece of music, data
scientists need to extract a few features and additional information from the song
such as “liveliness,” “danceability,” “acousticness,” “valence,” etc. Once these attributes
(features) are extracted, they can be maintained and shared as consumer-aligned
domain data to train the sentiment analysis domain or other adjacent models such as
playlist creation.

Consumer-aligned domain data has a different nature in comparison to source-
aligned domain data. It structurally goes through more changes and transforms the
source domain events to structures and content that fit a particular use case.

I sometimes call this fit-for-purpose domain data. The notion of the consumer here
refers to the applications that consume the data, or data users such as data scientists
or analysts.

Transition to Domain Ownership
To me, domain-driven data ownership feels organic, a natural progression of modern
organizations’ digital journey. Despite that, it disputes some of the archaic rules of
analytical data management. Below is a list of a few of these rules, and I’m sure you
can think of others.

Push Data Ownership Upstream
Data architecture nomenclature has flourished from the source of life itself: water.
Things of concepts like data lakes, lakeshore marts, dataflow, lakehouses, data pipe‐
lines, lake hydration, etc. I do admit that it’s a reassuring symbol; it’s soothing and
simply beautiful. However, there is a dangerous notion lurking underneath it, the
notion that data must flow from a source to some other place—e.g., the centralized
lake—to become useful, to become meaningful, to have value, and to be worthy of
consumption. There is an assumption that data upstream is less valuable or useful
than data downstream.
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Data mesh challenges this assumption. Data can be consumable and useful right
at the source domain—the source analytical data and not the source operational
application. I call this source-aligned domain data. It only flows from an operational
system to its collaborators and adjacent analytical data products. The purifying or
optimizing transformations are limited before it becomes suitable for analytical use.

Of course, at a later point downstream, source-aligned domain data can be aggre‐
gated and transformed to create a new higher order insight. I call this aggregate
domain data or fit-for-purpose domain data. These downstream transformations
happen within the context of downstream domains, under the domains’ long-term
ownership. There is no intelligent transformation that happens in the no-man’s-land
in-between domains, in what is today called a data pipeline.

Define Multiple Connected Models
Data warehousing techniques and central data governance teams have been in search
of the one canonical model holy grail. It’s a wonderful idea, one model that describes
data domains and can be used to provide a shared meaning to all data users. But in
reality systems are complex and continuously changing, and no one model can tame
this messy life of data. Data mesh in contrast follows DDD’s bounded context and
context mapping for data modeling. Each domain can model its data according to its
context, share this data and its models with others, and identify how one model can
relate and map to others.

This means there could be multiple models of the same concept in different domains
and that is OK. For example, the artist representation in the payment includes
payment attributes, which is very different from the artist model in the recommen‐
dation domain, which includes the artist profile and genre. But the mesh should
allow mapping an artist from one domain to another and be able to link artist data
from one domain to the same artist in another. There are multiple ways to achieve
this, including a unified identification scheme, a single ID used by all domains that
include an artist.

Polysemes
Polysemes are shared concepts across different domains. They point to the same
entity, with domain-specific attributes. Polysemes represent shared core concepts in a
business such as “artist,” “listener,” and “song.”

Following DDD, data mesh allows different domains’ analytical data to model a poly‐
seme according to the bounded context of their domain. However, it allows mapping
a polyseme from one domain to another, with a global identification scheme.
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Embrace the Most Relevant Domain Data:
Don’t Expect a Single Source of Truth
Another myth circulating the data industry is the search for the single source of
truth for each shared business concept, for example, one source of truth to know
everything about “listeners,” “playlists,” “artists,” etc. This is a wonderful idea. The
motivations are necessary: prevent multiple copies of out-of-date data and the sprawl
of untrustworthy data. But in reality it’s proved costly, an impediment to scale and
speed, or simply unachievable. Data mesh does not enforce the idea of one source
of truth. However, it places multiple practices in place that reduces the likelihood of
multiple copies of out-of-date data.

Long-term domain-oriented ownership with accountability to share discoverable,
high-quality, and usable data—in multiple modes for analysts and scientists—reduces
the need for copying and keeping stale data around.

Data mesh endorses reshaping and recomposition of data to create fit-for-purpose
data. Data can be read from one domain and transformed and stored by another
domain. For example, the emerging artist domain reads play events domain data
and transforms and then stores it as emerging artists. This mimics the real world,
as data moves around, gets copied, and gets reshaped. It’s very difficult to maintain
the ideology of a single source of truth under such a dynamic topology. Data mesh
enables the emergence of truth, while embracing a dynamic topology for scale and
speed.

As you will see in future chapters, the data mesh platform observes the mesh, pre‐
vents errors that often arise when data gets copied, and surfaces the most relevant and
reliable data.

Hide the Data Pipelines as Domains’ Internal Implementation
As the need for cleansing, preparing, aggregating, and sharing data remains, so does
the application of a data pipeline, regardless of using a centralized data architecture
or data mesh. The difference is that in traditional data architectures, data pipelines
are first-class architectural concerns that compose more complex data transformation
and movement. In data mesh, a data pipeline is simply an internal implementation of
the data domain and is handled internally within the domain. It’s an implementation
detail that must be abstracted from outside of the domain. As a result, when transi‐
tioning to data mesh, you will be redistributing different pipelines and their jobs to
different domains.
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For example, the source-aligned domains need to include the cleansing, deduplicat‐
ing, and enriching of their domain events so that they can be consumed by other
domains, without replication of cleansing downstream.

Consider Daff, where the media player domain provides audio play events. This
domain includes a cleansing and standardization data pipeline that provides a stream
of deduped near-real-time play events that conform to the organization’s standards of
encoding events.

Equally, we will see that the aggregation stages of a centralized pipeline move into the
implementation details of aggregate or fit-for-purpose domain data.

One might argue that this model leads to duplicated effort in each domain to create
their own data processing pipeline implementation, technology stack, and tooling.
Data mesh addresses this concern with the self-serve data platform, described in
Chapter 4.

With data mesh, domains are taking on additional data responsibilities. The responsi‐
bilities and efforts shift from a centralized data team to domains, to gain agility and
authenticity.

Recap
Arranging data and its ownership around technology has been an impediment to
scale; it simply has been orthogonal to how change happens and features develop.
Centrally organized data teams have been the source of friction. There is an alterna‐
tive. The alternative is a tried and tested method to scale modeling at the enterprise
level: domain-driven bounded context modeling.

Data mesh adapts the concept of domain bounded contexts to the world of analytical
data. It demands domain teams who are closest to the data own the analytical data
and serve the domain’s analytical data to the rest of the organization. Data mesh sup‐
ports the creation of new domains’ data by composing, aggregating, and projecting
existing domains.

There are three fuzzy classifications of domain data:

• Source-aligned (native) analytical data, created and shared by the teams who own•
the source operational systems.

• Aggregates, analytical data in the middle, between consumers and producers,•
compositions of multiple upstream data products. Aggregates are owned by the
producer or consumer teams, or a newly formed team.

• Consumer-aligned (fit-for-purpose) analytical data, designed for a particular data•
consumption scenario.
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The shift toward domain-oriented data ownership leads to accepting and work‐
ing with real-world messiness of data, particularly in high-speed and scaled
environments:

• Work with multiple models of shared entities, which are linked (mapped) to each•
other.

• No more pipelines, well not at a high level. There will be pipelines hidden as•
internal implementations supporting particular domain data.

If you take one thought from this chapter, it would be this:

All models are wrong, but some are useful.
—George Box

Don’t try to design the domains of a business up front and allocate and model analyt‐
ical data according to that. Instead, start working with the seams of your business
as they are. If your business is already organized based on domains, start there. If
not, perhaps data mesh is not the right solution just yet. Let the evolution of data
influence the shape of the organization, and vice versa.
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CHAPTER 3

Principle of Data as a Product

One long-standing challenge of existing analytical data architectures is the high
friction and cost of using data: discovering, understanding, trusting, exploring, and
ultimately consuming quality data. There have been numerous surveys surfacing this
friction. A recent report from Anaconda, a data science platform company, “The State
of Data Science 2020”, finds that nearly half of a data scientist’s time is spent on
data preparation—data loading and cleansing. If not addressed, this problem only
exacerbates with data mesh, as the number of places and teams who provide data, i.e.,
domains, increases. Distribution of the organization’s data ownership into the hands
of the business domains raises important concerns around accessibility, usability, and
harmonization. Further data siloing and regression of data usability are potential
undesirable consequences of data mesh’s first principle, domain-oriented ownership.
The principle of data as a product addresses these concerns.

The second principle of data mesh, data as a product, applies product thinking to
domain-oriented data to remove such usability frictions and truly delight the experi‐
ence of the data users—data scientists, data analysts, data explorers, and anyone in
between. Data as a product expects that the analytical data provided by the domains is
treated as a product, and the consumers of that data should be treated as customers—
happy and pleased. Furthermore, data as a product underpins the case for data mesh,
unlocking the value of an organization’s data by dramatically increasing the potential
for serendipitous and intentional use.

In his book INSPIRED, Marty Cagan, a prominent thought leader in product devel‐
opment and management, provides convincing evidence on how successful products
have three common characteristics: they are feasible, valuable, and usable. Data as a
product principle defines a new concept, called data product, that embodies standard‐
ized characteristics to make data valuable and usable. Figure 3-1 demonstrates this
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point visually. This chapter introduces these characteristics. Chapter 4 describes how
to make building data products feasible.

Figure 3-1. Data products live at the intersection of Marty Cagan’s characteristics of
successful products

For data to be a product it adheres to a set of rules and exhibits a set of traits that
make it fit right in the intersection of Cargan’s usability, feasibility, and valuable Venn
diagram. For data to be a product, it must be valuable to its users—on its own and in
cooperation with other data products. It must demonstrate empathy for its users and
be accountable for its usability and integrity.

I admit that treating data as a product doesn’t simply happen out of good intentions.
For that, this principle introduces new roles to domains such as the domain data
product owner and data product developer who have responsibility for creating,
serving, and evangelizing data products, while maintaining the specific objective
measures of data accessibility, quality, usability, and availability over the lifetime of
the data products. Chapter 16 will cover further details about these new roles.

Compared to past paradigms, data as a product inverts the model of responsibility.
In data lake or data warehousing architectures the accountability of creating data
with quality and integrity resides downstream from the source and remains with the
centralized data team. Data mesh shifts this responsibility close to the source of the
data. This transition is not unique to data mesh; in fact, over the last decade we have
seen the trend of shift left with testing and operations, on the basis that addressing
problems is cheaper and more effective when done close to the source.

I go as far as saying that what gets shared on a mesh is not merely data; it is a data
product.
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Data as a product is about applying product thinking to how data
is modeled and shared. This is not to be confused with product
selling.

Let’s unpack how we can apply product thinking to data.

Applying Product Thinking to Data
Over the last decade, high-performing organizations have embraced the idea of treat‐
ing their internal operational technology like a product, similarly to their external
technology. They treat their internal developers as customers and their satisfaction
a sign of success. Particularly in two areas, this trend has been strongly adopted:
applying product management techniques to internal platforms, which accelerates
the ability of internal developers to build and host solutions on top of internal
platforms (e.g., Spotify Backstage), and treating APIs as a product to build APIs that
are discoverable, understandable, and easily testable to assure an optimal developer
experience (e.g., Square APIs).

Applying the magic ingredient of product thinking to internal technology begins with
establishing empathy with internal consumers (i.e., fellow developers), collaborating
with them on designing the experience, gathering usage metrics, and continuously
improving the internal technical solutions over time to maintain ease of use. Strong
digital organizations allocate substantial resources and attention to building internal
tools that are valuable to the developers and ultimately the business.

Curiously, the magical ingredient of empathy, treating data as a product and its users
as customers, has been missing in big data solutions. Operational teams still perceive
their data as a byproduct of running the business, leaving it to someone else, e.g., the
data team, to pick it up and recycle it into products. In contrast, data mesh domain
teams apply product thinking with similar rigor to their data, striving for the best
data user experience.

Consider Daff. One of its critical domains is the media player. The media player
domain provides essential data such as what songs have been played by whom, when,
and where. There are a few different key data users for this information. For example,
the media player support team is interested in near-real-time events to quickly catch
errors causing a degrading customer experience and recover the service, or respond
to incoming customer support calls informedly. On the other hand, the media player
design team is interested in aggregated play events that tell a data story about the
listener’s journey over a longer period of time, to improve media players with more
engaging features toward an overall better listener experience.
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With an informed understanding of these use cases and what information the other
teams need, the media player domain provides two different types of data as its
products to the rest of the organization: near-real-time play events exposed as infinite
event logs, and aggregated play sessions exposed as serialized files on an object store.
This is product ownership applied to data.

Figure 3-2 shows the media player domain data products.

Figure 3-2. Data products example

As you can imagine, you can adopt the majority of the product ownership techniques
to data. However, there is something unique about data. The difference between data
product ownership and other types of products lies in the unbounded nature of data
use cases, the ways in which particular data can be combined with other data and
ultimately turned into insights and actions. At any point in time, data product owners
are aware or can plan for what is known today as viable use cases of their data, while
there remains a large portion of unknown future use cases for the data produced
today, perhaps beyond their imagination.

This is more true for source-aligned domains and less for consumer-aligned ones.
This source-aligned data captures the reality of the business interactions and events
as they have happened. They can continue to be used, transformed, and reinterpre‐
ted by data users of the future. Source-aligned data products need to balance the
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immediate known use cases and the unknown ones. They have no choice but to strive
to model the reality of the business, as closely as possible, in their data, without too
much assumption in how it will be used. For example, capturing all the play events
as an infinite high-resolution log is a safe choice. It opens the spectrum of future
users who can build other transformations and infer new insights from the data that
is captured today.

This is the main difference between data product design and software product design.

Baseline Usability Attributes of a Data Product
In my opinion, there is a set of non-negotiable baseline characteristics that a data
product incorporates to be considered useful. These characteristics apply to all data
products, regardless of their domain or archetype. I call these baseline data product
usability attributes. Every data product incorporates these characteristics to be part of
the mesh. Figure 3-3 lists data products’ usability attributes.

Figure 3-3. The baseline usability attributes of data products (DAUTNIVS)
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2 Don Norman, The Design of Everyday Things: Revised and Expanded Edition. (New York: Basic Books, 2013).

Note that these usability characteristics are oriented around the experience of the data
users. These are not intended to express the technical capabilities. Part IV, “Design of
Data Quantum Architecture,” covers the technical characteristics of data products.

The baseline characteristics listed in this section are an addition to what has been
known as FAIR data in the past—data that meets the principles of findability,
accessibility, interoperability, and reusability.1 In addition to these principles I have
introduced characteristics that are necessary to make distributed data ownership
work.

Let’s put ourselves in the shoes of data users and walk through these attributes.

Discoverable

Two of the most important characteristics of good design are discoverability and
understanding. Discoverability: Is it possible to even figure out what actions are possi‐
ble and where and how to perform them? Understanding: What does it all mean? How
is it supposed to be used? What do all the different controls and settings mean?2

—Don Norman

The very first step that data users take in their journey is to discover the world of
data available to them and explore and search to find “the one.” Hence, one of the
first usability attributes of data is to be easily discoverable. Data users need to be
able to explore the available data products, search and find the desirable sets, and
explore them and gain confidence in using them. A traditional implementation of
discoverability is a centralized registry or catalog listing available datasets with some
additional information about each dataset, the owners, the location, sample data, etc.
Often this information is curated after the fact by the centralized data team or the
governance team.

Data product discoverability on data mesh embraces a shift-left solution where the
data product itself intentionally provides discoverability information. Data mesh
embraces the dynamic topology of the mesh, continuously evolving data products
and the sheer scale of available data products. Hence, it relies on individual data
products to provide their discoverability information at different points of their life
cycle—build, deploy, and run—in a standard way. Each data product continuously
shares its source of origin, owners, runtime information such as timeliness, quality
metrics, sample datasets, and most importantly information contributed by their
consumers such as the top use cases and applications enabled by their data.

Part IV, “How to Design the Data Product Architecture”, will discuss the technical
design of data product discoverability.
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Addressable
A data product offers a permanent and unique address to the data user to program‐
matically or manually access it. This addressing system embraces the dynamic nature
of the data and the mesh topology. It must recognize that many aspects of data
products will continue to change, while it assures continuity of usage.

The addressing system accommodates the following ever-changing aspects of a data
product, among others, while retaining access to the data product through its long-
lasting unique address:

Semantic and syntax changes in data products
Schema evolution

Continuous release of new data over time (window)
Partitioning strategy and grouping of data tuples associated with a particular
time (or time window)

Newly supported modes of access to data
New ways of serializing, presenting, and querying the data

Changing runtime behavioral information
For example, service-level objectives, access logs, debug logs

The unique address must follow a global convention that helps users to program‐
matically and consistently access all data products. The data product must have an
addressable aggregate root that serves as an entry to all information about a data
product, including its documentation, service-level objectives, and the data it serves.

Understandable
Once a data product is discovered, the next step of the data user’s journey is to
understand it, which involves getting to know the semantics of its underlying data, as
well as various syntax in which the data is encoded.

Each data product provides semantically coherent data: data with a specific meaning.
A data user needs to understand this meaning: what kind of entities the data product
encapsulates, what the relationships among the entities are, and their adjacent data
products.

Getting back to the media player event example, a data user should easily understand
what constitutes a player event: the user, the play actions they have taken, the
time and location of their action, and the feedback the action has resulted in. The
data user should easily understand the kinds of actions available and that there is
a relationship between a listener triggering a player event and a subscriber from
the adjacent listener domain. Data products provide a formal representation of such
semantics.
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3 Rachel Botsman, “Trust-Thinkers”, July 26, 2018.

In addition to understanding the semantics, data users need to understand how
exactly the data is presented to them. How is it serialized, and how can they access
and query the data syntactically? What kind of queries can they execute or how can
they read the data objects? They need to understand the schema of the underlying
syntax of data. Sample datasets and example consumer codes ideally accompany
this information. Examples accompanied with a formalized description of the data
improve data users’ understanding.

Additionally, dynamic and computational documents like computational notebooks
are great companions to tell the story of a data product. Computational notebooks
include documentation of the data, as well as code to use it, with immediate feedback
that visually demonstrates the code’s result.

Lastly, understanding is a social process. We learn from each other. Data products
facilitate communication across their users to share their experience and how they
take advantage of the data product.

Understanding a usable data product requires no hand-holding. A self-serve method
of understanding is a baseline usability characteristic.

Trustworthy and truthful

[Trust is] a confident relationship with the unknown.3

—Rachel Botsman

No one will use a product that they can’t trust. So what does it mean to trust a data
product, and more importantly what does it take to trust? To unpack this, I like to
use the concept of trust offered by Rachel Botsman: the bridge between the known and
the unknown. A data product needs to close the gap between what data users know
confidently about the data, and what they don’t know but need to know to trust it.
While the prior characteristics like understandability and discoverability close this
gap to a degree, it takes a lot more to trust the data for use.

The data users need to confidently know that the data product is truthful, that it
represents the fact of the business correctly. They need to confidently know how
closely data reflects the reality of the events that have occurred, the probability of
truthfulness of the aggregations and projections that have been created from business
facts.

A piece of closing the trust gap is to guarantee and communicate data products’
service-level objectives (SLOs)—objective measures that remove uncertainty sur‐
rounding the data.
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Data product SLOs include, among others:

Interval of change
How often changes in the data are reflected

Timeliness
The skew between the time that a business fact occurs and becomes available to
the data users

Completeness
Degree of availability of all the necessary information

Statistical shape of data
Its distribution, range, volume, etc.

Lineage
The data transformation journey from source to here

Precision and accuracy over time
Degree of business truthfulness as time passes

Operational qualities
Freshness, general availability, performance

In the traditional approaches to data management, it’s common to extract and
onboard data that has errors, does not reflect the truth of the business, and simply
can’t be trusted. This is where the majority of the efforts of centralized data pipelines
are concentrated, cleansing data after ingestion.

In contrast, data mesh introduces a fundamental shift that the owners of the data
products must communicate and guarantee an acceptable level of quality and trust‐
worthiness—specific to their domain—as an intrinsic characteristic of their data
product. This means cleansing and running automated data integrity tests at the
point of the creation of a data product.

Providing data provenance and data lineage—the data journey, where it has come
from and how it got here—as the metadata associated with each data product helps
consumers gain further confidence in the data product. The users can evaluate this
information to determine the data’s suitability for their particular needs. I’m of the
opinion that once the discipline of building trustworthiness in each data product is
established, there is less need for establishing trust through investigative processes
and applying detective techniques navigating a lineage tree. Having said that, data
lineage will remain an important element in a few scenarios, such as postmortem
root-cause analysis, debugging, data compliance audits, and evaluation of data’s fit‐
ness for ML training.
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Natively accessible
Depending on the data maturity of the organization there is a wide spectrum of data
user personas in need of access to data products. The spectrum spans a large profile
of users, as displayed in Figure 3-4: data analysts who are comfortable with explor‐
ing data in spreadsheets, data analysts who are comfortable with query languages
to create statistical models of data as visualizations or reports, data scientists who
curate and structure data and consume data frames to train their ML models, and
data-intensive application developers who expect a real-time stream of events or pull-
based APIs. This is a fairly wide spectrum of users with equally diverse expectations
of how to access and read data.

Figure 3-4. Example of a wide spectrum of data product users with different data access
patterns

There is a direct link between the usability of a data product and how easily a
particular data user can access it with their native tools. Hence, a data product needs
to make it possible for various data users to access and read its data in their native
mode of access. This can be implemented as a polyglot storage of data or by building
multiple read adapters on the same data.
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For example, the play events data product needs to natively support reading data
through SQL query to satisfy a data analyst’s native mode of access, publishing a
stream of events for data-intensive applications, and columnar files for data scientists.

Interoperable
One of the main concerns in a distributed data architecture is the ability to correlate
data across domains and stitch them together in wonderful and insightful ways: join,
filter, aggregate. The key for an effective composability of data across domains is
following standards and harmonization rules that allow linking data across domains
easily.

Here are a few things data products need to standardize to facilitate interoperability
and composability:

Field type
A common explicitly defined type system

Polysemes identifiers
Universally identifying entities that cross boundaries of data products

Data product global addresses
A unique global address allocated to each data product, ideally with a uniform
scheme for ease of establishing connections to different data products

Common metadata fields
Such as representation of time when data occurs and when data is recorded

Schema linking
Ability to link and reuse schemas—types—defined by other data products

Data linking
Ability to link or map to data in other data products

Schema stability
Approach to evolving schemas that respects backward compatibility

For example, let’s look at managing polysemes identifiers. At Daff, artist is a core
business concept that appears in different domains. An artist, while remaining the
same global entity, has different attributes and likely different identifiers in each
domain. The play events data product recognizes the artist differently from the
payment domain—taking care of invoices and payments for artists’ royalties. In
order to correlate data about an artist across different domain data products Daff
needs to agree on how they identify an artist, globally, across all data products.

Chapter 5 covers the topic of global standards and protocols applied to each data
product. Interoperability is the foundation of any distributed system design, and data
mesh is no exception.
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Valuable on its own
I think it’s fairly obvious that a data product must be valuable—it should have some
inherent value for the data users in service of the business and customers. After all,
if the data product owner can’t envisage any value out of the data product, perhaps
it’s best not to create one. Having said that, it’s worth calling out that a data product
should carry a dataset that is valuable and meaningful on its own—without being
joined and correlated with other data products.

Of course, there is always higher-order meaning, insight, and value that can be
derived by correlating multiple data products. However, if a data product on its own
serves no value on its own, it should not exist.

While this may sound obvious, there is a common antipattern when migrating from
a warehouse architecture to data mesh: directly mapping warehouse tables to data
products can create data products with no value. In the data warehouse, there are
glue (aka facts) tables that optimize correlation between entities. These are identity
tables that map identifiers of one kind of entity to another. Such identity tables are
not meaningful or valuable on their own—without being joined to other tables. They
are simply mechanical implementations to facilitate joins.

On the contrary, there are no mechanical data products that solely exist to enable the
machines to correlate information across the mesh. Machine optimizations such as
indices or fact tables must be automatically created by the platform and hidden from
the product products.

Secure
Data users access a data product securely and in a confidentiality-respecting manner.
Data security is a must, whether the architecture is centralized or distributed. How‐
ever, in a distributed architecture like data mesh, the access control is validated by
the data product, right in the flow of data, access, read, or write. The access control
policies can change dynamically. They continuously get evaluated at every point of
access to data products.

Additionally, access to a data product is not quite binary—whether the user can see
or can’t see the data. In many cases while the user may not be able to see the actual
records, it might have sufficient permissions to see the shape of the data and evaluate
it using its statistical characteristics.

Access control policies can be defined centrally but enforced at runtime by each indi‐
vidual data product. Data products follow the practice of security policy as code. This
means to write security policies in a way that they can be versioned, automatically
tested, deployed and observed, and computationally evaluated and enforced.

A policy described, tested, and maintained as code can articulate various security-
related concerns such as the following, among others:
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Access control
Who, what, and how data users—systems and people—can access the data
product

Encryption
What kinds of encryption—on disk, in memory, or in transit—using which
encryption algorithm, and how to manage keys and minimize the radius of
impact in case of breaches

Confidentiality levels
What kinds of confidential information, e.g., personally identifiable information,
personal health information, etc., the data product carries

Data retention
How long the information must be kept

Regulations and agreements
GDPR, CCPA, domain-specific regulations, contractual agreements

Transition to Data as a Product
In working with my clients, I have found that they are overwhelmingly receptive
to data mesh principles, often questioning “Why didn’t I think of it myself?” or occa‐
sionally saying, “We have been doing something similar but not quite the same.” The
principles appear to be intuitive and rather natural next steps in their organization’s
tech modernization journey, an extension to modernization of the operational aspect
of organizations, e.g., moving toward domain-oriented ownership of capabilities with
microservices and treating internal products like operational APIs as products.

However, a sense of discomfort arises when they go deeper into what it actually takes
to implement the transformation toward data mesh. I found in my conversations
with data mesh early implementers that while they verbalize the principles and their
intention to implement them, the implementations remain heavily influenced by the
familiar techniques of the past.

For this reason, I have decided to include a number of thought-provoking transition
statements as well as a few pragmatic steps to crystalize the differences between the
existing paradigm and truly owning data as a product.

I invite you to think of new transition statements that I likely have missed here.

Include Data Product Ownership in Domains
In the past decade, teams have continued to move from being functionally divided
to becoming cross-functional. The DevOps movement has led to closing the gap
between building and operating business services and forming dev and ops cross-
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functional teams. Customer-obsessed product development has brought the design
and product ownership closer to the developers.

The introduction of analytical data as a product adds to the list of existing responsi‐
bilities of cross-functional domain teams and expands their roles to:

Data product developer
The role responsible for developing, serving, and maintaining the domain’s data
products as long as the data products live and are being used

Data product owner
The role accountable for the success of a domain’s data products in delivering
value, satisfying and growing the data users, and maintaining the life cycle of the
data products

Define these roles for each domain and allocate one or multiple people to the roles
depending on the complexity of the domain and the number of its data products.

Reframe the Nomenclature to Create Change
One commonly used term in data analytics is ingestion, receiving data from an
upstream source—often an untrustworthy source that has egested data as a byproduct
of its operation. It’s now the job of the downstream pipeline to ingest, clean, and
process the data before it can be consumed to generate value.

Data mesh suggests reframing receiving upstream data from ingestion to consumption.
The subtle difference is that the upstream data is already cleansed, processed, and
served ready for consumption. The change of language creates a new cognitive fram‐
ing that is more aligned with the principle of serving data as a product.

Relatedly, the word extraction used in ETL (extract, transform, load) and its other
variations needs to be critically evaluated. Extraction evokes a passive role for the
provider and an intrusive role for the consumer. As we know, extracting data from an
operational database that is not optimized for external use other than its own applica‐
tion creates all kinds of pathological coupling and a fragile design. Instead, we can
shift the language to publish, serve, or share. This implies shifting the implementation
of data sharing from accessing raw databases to intentionally sharing domain events
or aggregates.

By now you probably have picked up on my emphasis on language and the
metaphors we use. George Lakoff—professor of cognitive science and linguistics
at UC Berkeley—in his book, Metaphors We Live By, elegantly demonstrates the
consequence of shifting our language around the concept of argument, from war to
dance. Imagine the world we would live in and the relationships we would nurture, if
instead of winning an argument, losing and gaining argument ground, and attacking
the weak points of an argument, we would, as dancers, perform a balanced and
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aesthetically pleasing argument, expressing our ideas and emotions through the
beautiful and collaborative ritual of dancing. This unexpected reframing of language
has a profound behavioral impact.

Think of Data as a Product, Not a Mere Asset
“Data is an asset.” “Data must be managed like an asset.” These are the phrases that
have dominated our vernacular in big data management.

The metaphor of asset used for data is nothing new. After all, for decades, TOGAF,
a standard of the Open Group for Enterprise Architecture methodologies and frame‐
works, explicitly has penciled in “Data Is an Asset” as the first principle of its data
principles. While this is a rather harmless metaphor on the surface, it has shaped
our perceptions and actions toward negative consequences, for example, our actions
toward how we measure success. Based on my observations, data as an asset has led
to measuring success by vanity metrics—metrics that make us look or feel good but
don’t impact performance—such as the number of datasets and tables captured in the
lake or warehouse, or the volume of data. These are the metrics I repeatedly come
across in organizations. Data as an asset promotes keeping and storing data rather
than sharing it. Interestingly, TOGAF’s “Data Is an Asset” principle is immediately
followed by “Data Is Shared.”

I suggest the change of metaphor to data as a product, and a change of perspective
that comes with that, for example, measuring success through adoption of data, its
number of users, and their satisfaction using the data. This underscores sharing the
data versus keeping and locking it up. It puts emphasis on the continuous care that a
quality product deserves.

I invite you to spot other metaphors and vocabulary that we need to change to
construct a new system of concepts for data mesh.

Establish a Trust-But-Verify Data Culture
Data as a product principle implements a number of practices that lead to a culture
where data users, by default, can trust the validity of the data and put their focus on
verifying its fitness for their use cases.

These practices include introducing a role for long-term ownership of a data product,
accountable for the integrity, quality, availability, and other usability characteristics of
the data product; introducing the concept of a data product that not only shares data
but also explicitly shares a set of objective measures such as timeliness, retention, and
accuracy; and creating a data product development process that automates testing of
the data product.

Today, in the absence of these data-as-a-product practices, data lineage remains a
vital ingredient for establishing trust. Data users have been left with no choice but
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4 Couldn’t help but notice that the 18th century Latin meaning of datum is “something given.” This early
meaning is a lot closer to the spirit of “data product’” valuable facts to give and share.

to assume data is untrustworthy and requires a detective investigation through its
lineage before it can be trusted. This lack of trust is the result of the wide gap between
data providers and data users due to the data providers’ lack of visibility to the
users and their needs, lack of long-term accountability for data, and the absence of
computational guarantees.

Data-as-a-product practices aim to build a new culture, from presumption of guilt to
the Russian proverb of trust but verify.

Join Data and Compute as One Logical Unit
Let’s do a test.

When you hear the word data product, what comes to your mind? What shape? What
does it contain? How does it feel? I can guarantee that a large portion of readers
imagine static files or tables, columns and rows, some form of storage medium. It
feels static. It’s accumulated. Its content is made of bits and bytes that are representa‐
tive of the facts, perhaps beautifully modeled. That is intuitive. After all, by definition
datum—singular form—is a “piece of information.”4

This perspective results in the separation of code (compute) from data, in this case,
separation of the code that maintains the data, creates it, and serves it. This separa‐
tion creates orphaned datasets that decay over time. At scale, we experience this
separation as data swamps—a deteriorated data lake.

Data mesh shifts from this dual mode of data versus code to data and code as one
architectural unit, a single deployable unit that is structurally complete to do its job,
providing the high-quality data of a particular domain. One doesn’t exist without the
other.

Data and code coexisting as one unit is not a new concept for people who have
managed microservices architecture. The evolution of operational systems has moved
to a model in which each service manages its code and data, schema definition, and
upgrades. The difference between an operational system is the relationship between
the code and its data. In the case of microservices architecture, data serves the code. It
maintains state so that code can complete its job, serving business capabilities. In the
case of a data product and data mesh this relationship is inverse: code serves data. The
code transforms the data, maintains its integrity, governs its policies, and ultimately
serves it.

Note that the underlying physical infrastructures that host code and data are kept
separate.
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Recap
The principle of data as a product is a response to the data siloing challenge that may
arise from the distribution of data ownership to domains. It is also a shift in the data
culture toward data accountability and data trust at the point of origin. The ultimate
goal is to make data simply usable.

The chapter explained eight nonnegotiable baseline usability characteristics of data
products including discoverability, addressability, understandability, trustworthiness,
native accessibility, interoperability, independently valuable, and security.

I introduced the role of data product owner—someone with an intimate understand‐
ing of the domain’s data and its consumers—to assure continuity of ownership of data
and accountability of success metrics such as data quality, decreased lead time of data
consumption, and in general data user satisfaction through net promoter score.

Each domain includes a data product developer role, responsible for building, main‐
taining, and serving the domain’s data products. Data product developers will be
working alongside their fellow application developers in the domain.

Each domain team may serve one or multiple data products. It’s also possible to form
new teams to serve data products that don’t naturally fit into an existing operational
domain.

Data as a product creates a new system of the world, where data is and can be trusted,
built, and served with deep empathy for its users, and its success is measured through
the value delivered to the users and not its size.

This ambitious shift must be treated as an organizational transformation. I will
cover the organizational transformation in Part V of this book. It also requires an
underlying supporting platform. The next chapter looks into the platform shift to
make data as a product feasible.
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CHAPTER 4

Principle of the Self-Serve Data Platform

Simplicity is about subtracting the obvious and adding the meaningful.
—John Maeda

So far I have offered two fundamental shifts toward data mesh: a distributed data
architecture and ownership model oriented around business domains, and data
shared as a usable and valuable product. Over time, these two seemingly simple
and rather intuitive shifts can have undesired consequences: duplication of efforts in
each domain, increased cost of operation, and likely large-scale inconsistencies and
incompatibilities across domains.

Expecting domain engineering teams to own and share analytical data as a product,
in addition to building applications and maintaining digital products, raises legiti‐
mate concerns for both the practitioners and their leaders. The concerns that I often
hear from leaders, at this point in the conversation, include: “How am I going to
manage the cost of operating the domain data products, if every domain needs to
build and own its own data?” “How do I hire the data engineers, who are already
hard to find, to staff in every domain?” “This seems like a lot of overengineering
and duplicate effort in each team.” “What technology do I buy to provide all the
data product usability characteristics?” “How do I enforce governance in a distributed
fashion to avoid chaos?” “What about copied data—how do I manage that?” And so
on. Similarly, domain engineering teams and practitioners voice concerns such as,
“How can we extend the responsibility of our team to not only build applications to
run the business, but also share data?”

Addressing these questions is the reason that data mesh’s third principle, self-serve
data infrastructure as a platform, exists. It’s not that there is any shortage of data
and analytics platforms, but we need to make changes to them so they can scale out
sharing, accessing, and using analytical data, in a decentralized manner, for a new
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population of generalist technologists. This is the key differentiation of a data mesh
platform.

Figure 4-1 depicts the extraction of domain-agnostic capabilities out of each domain
and moving to a self-serve infrastructure as a platform. The platform is built and
maintained by a dedicated platform team.

Figure 4-1. Extracting and harvesting domain agnostic infrastructure into a separate
data platform

In this chapter, I apply platform thinking to the underlying infrastructure capabilities
to clarify what we mean by the term platform in the context of data mesh. Then, I
share the unique characteristics of data mesh’s underlying platform. Later chapters,
such as Chapters 9 and 10, will go into further detail about the platform’s capabilities
and how to approach its design. For now, let’s discuss how data mesh’s underlying
platform is different from many solutions we have today.
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In this chapter, I use the phrase data mesh platform as shorthand
for a set of underlying data infrastructure capabilities. A singular
form of the term platform does not mean a single solution or a sin‐
gle vendor with tightly integrated features. It’s merely a placeholder
for a set of technologies that one can use to achieve the objectives
mentioned in “Data Mesh Platform Thinking” on page 54, a set of
technologies that are independent and yet play nicely together.

Data Mesh Platform: Compare and Contrast
There is a large body of technology solutions that fall into the category of data
infrastructure and are often posed as a platform. Here is a small sample of the existing
platform capabilities:

• Analytical data storage in the form of a lake, warehouse, or lakehouse•
• Data processing frameworks and computation engines to process data in batch•

and streaming modes
• Data querying languages, based on two modes of computational data flow pro‐•

gramming or algebraic SQL-like statements
• Data catalog solutions to enable data governance as well as discovery of all data•

across an organization
• Pipeline workflow management, orchestrating complex data pipeline tasks or ML•

model deployment workflows

Many of these capabilities are still needed to enable a data mesh implementation.
However, there is a shift in approach and the objectives of a data mesh platform. Let’s
do a quick compare and contrast.

Figure 4-2 shows a set of unique characteristics of a data mesh platform in compar‐
ison to the existing ones. Note that the data mesh platform can utilize existing
technologies yet offer these unique characteristics.

The following section clarifies how data mesh works toward building self-serve
platforms further.
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Figure 4-2. Data mesh platform’s differentiating characteristics
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Serving Autonomous Domain-Oriented Teams
The main responsibility of the data mesh platform is to enable existing or new
domain engineering teams with the new and embedded responsibilities of building,
sharing, and using data products end to end; capturing data from operational systems
and other sources; and transforming and sharing the data as a product with the end
data users.

The platform must allow teams to do this in an autonomous way without any
dependence on centralized data teams or intermediaries.

Many existing vendor technologies are built with an assumption of a centralized
data team, capturing and sharing data for all domains. The assumptions around this
centralized control have deep technical consequences such as:

• Cost is estimated and managed monolithically and not per isolated domain•
resources.

• Security and privacy management assumes physical resources are shared under•
the same account and don’t scale to an isolated security context per data product.

• A central pipeline (DAG) orchestration assumes management of all data pipelines•
centrally—with a central pipeline configuration repository and a central moni‐
toring portal. This is in conflict with independent pipelines, each small and
allocated to a data product implementation.

These are a few examples to demonstrate how existing technologies get in the way of
domain teams acting autonomously.

Managing Autonomous and Interoperable Data Products
Data mesh puts a new construct, a domain-oriented data product, at the center
of its approach. This is a new architectural construct that autonomously delivers
value. It encodes all the behavior and data needed to provide discoverable, usable,
trustworthy, and secure data to its end data users. Data products share data with
each other and are interconnected in a mesh. Data mesh platforms must work with
this new construct and must support managing its autonomous life cycle and all its
constituents.

This platform characteristic is different from the existing platforms today that man‐
age behavior, e.g., data processing pipelines, data and its metadata, and policy that
governs the data as independent pieces. However, it is possible to create the new data
product management abstraction on top of existing technologies, but it is not very
elegant.
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A Continuous Platform of Operational and Analytical Capabilities
The principle of domain ownership demands a platform that enables autonomous
domain teams to manage data end to end. This closes the gap organizationally
between the operational plane and the analytical plane. Hence, a data mesh platform
must be able to provide a more connected experience. Whether the team is building
and running an application or sharing and using data products for analytical use
cases, the team’s experience should be connected and seamless. For the platform to
be successfully adopted with existing domain technology teams, it must remove the
barriers to adoption, the schism between the operational and analytical stacks.

The data mesh platform must close the gap between analytical and operational
technologies. It must find ways to get them to work seamlessly together, in a way that
is natural to a cross-functional domain-oriented data and application team.

For example, today the computation fabric running data processing pipelines such as
Spark are managed on a different clustering architecture, away and often disconnec‐
ted from the computation fabric that runs operational services, such as Kubernetes.
In order to create data products that collaborate closely with their corresponding
microservice, i.e., source-aligned data products, we need a closer integration of the
computation fabrics. I have worked with very few organizations that have been
running both computation engines on the same computation fabric.

Due to inherent differences between the two planes, there are many areas of the
platform where the technology for operational and analytical systems must remain
different. For example, consider the case of tracing for debugging and audit purposes.
The operational systems use the OpenTelemetry standards for tracing of (API) calls
across distributed applications, in a tree-like structure. On the other hand, data
processing workloads use OpenLineage to trace the lineage of data across distributed
data pipelines. There are enough differences between the two planes to mind their
gap. However, it is important that these two standards integrate nicely. After all, in
many cases, the journey of a piece of data starts from an application call in response
to a user action.

Designed for a Generalist Majority
Another barrier to the adoption of data platforms today is the level of proprietary
specialization that each technology vendor assumes—the jargon and the vendor-
specific knowledge. This has led to the creation of scarce specialized roles such as data
engineers.

In my opinion there are a few reasons for this unscalable specialization: lack of (de
facto) standards and conventions, lack of incentives for technology interoperability, and
lack of incentive to make products super simple to use. I believe this is the residue of
the big monolithic platform mentality that a single vendor can provide soup to nuts
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functionality to store your data on their platform and attach their additional services
to keep the data there and its processing under their control.

A data mesh platform must break this pattern and start with the definition of a
set of open conventions that promote interoperability between different technologies
and reduce the number of proprietary languages and experiences one specialist must
learn to generate value from data. Incentivizing and enabling generalist developers
with experiences, languages, and APIs that are easy to learn is a starting point to
lower the cognitive load of generalist developers. To scale out data-driven develop‐
ment to the larger population of practitioners, data mesh platforms must stay relevant
to generalist technologists. They must move to the background, fit naturally into the
native tools and programming languages generalists use, and get out of their way.

Needless to say, this should be achieved without compromising on the software engi‐
neering practices that result in sustainable solutions. For example, many low-code
or no-code platforms promise to work with data, but compromise on testing, version‐
ing, modularity, and other techniques. Over time they become unmaintainable.

The phrase generalist technologist (experts) refers to the population
of technologists who are often referred to as T-shaped or Paint
Drip people. These are developers experienced in a broad spectrum
of software engineering who, at different points in time, focus and
gain deep knowledge in one or two areas.
The point is that it is possible to go deep in one or two areas while
exploring many others.
They contrast with specialists, who only have expertise in one
specific area; their focus on specialization doesn’t allow them to
explore a diverse spectrum.
In my mind, future generalists will be able to work with data
and create and share data through data products, or use them for
feature engineering and ML training when the model has already
been developed by specialist data scientists. Essentially, they use AI
as a service.
As of now, the majority of data work requires specialization and
requires a large amount of effort to gain expertise over a long
period of time. This inhibits the entry of generalist technologists
and has led to a scarcity of data specialists.

Favoring Decentralized Technologies
Another common characteristic of existing platforms is the centralization of con‐
trol. Examples include centralized pipeline orchestration tools, centralized catalogs,
centralized warehouse schema, centralized allocation of compute/storage resources,
and so on. The reason for data mesh’s focus on decentralization through domain

Data Mesh Platform: Compare and Contrast | 53

https://oreil.ly/jHehn
https://oreil.ly/Durvx
https://oreil.ly/Durvx


ownership is to avoid organizational synchronization and bottlenecks that ultimately
slow down the speed of change. Though on the surface this is an organizational
concern, the underlying technology and architecture directly influence organizational
communication and design. A monolithic or centralized technology solution leads to
centralized points of control and teams.

Data mesh platforms need to consider the decentralization of organizations in data
sharing, control, and governance at the heart of their design. They inspect every
centralized aspect of the design that can result in lockstep team synchronization,
centralization of control, and tight coupling between autonomous teams.

Having said that, there are many aspects of infrastructure that need to be centrally
managed to reduce the unnecessary tasks that each domain team performs in sharing
and using data, e.g., setting up data processing compute clusters. This is where an
effective self-serve platform shines, centrally managing underlying resources while
allowing independent teams to achieve their outcomes end to end, without tight
dependencies to other teams.

Domain Agnostic
Data mesh creates a clear delineation of responsibility between domain teams—who
focus on creating business-oriented products, services that are ideally data-driven,
and data products—and the platform teams who focus on technical enablers for
the domains. This is different from the existing delineation of responsibility where
the data team is often responsible for amalgamation of domain-specific data for
analytical usage, as well as the underlying technical infrastructure.

This delineation of responsibility needs to be reflected in the platform capabilities.
The platform must strike a balance between providing domain-agnostic capabilities,
while enabling domain-specific data modeling, processing, and sharing across the
organization. This demands a deep understanding of the data developers and the
application of product thinking to the platform.

Data Mesh Platform Thinking
Platform: raised level surface on which people or things can stand.

—Oxford Languages

The word platform is one of the most commonly used phrases in our everyday tech‐
nical jargon and is sprinkled all over organizations’ technical strategies. It’s commonly
used, yet hard to define and subject to interpretation.

To ground our understanding of the platform in the context of data mesh I draw from
the work of a few of my trustworthy sources:
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A digital platform is a foundation of self-service APIs, tools, services, knowledge and
support which are arranged as a compelling internal product. Autonomous delivery
teams can make use of the platform to deliver product features at a higher pace, with
reduced coordination.

—Evan Bottcher, “What I Talk About When I Talk About Platforms”

The purpose of a platform team is to enable stream-aligned teams to deliver work with
substantial autonomy. The stream-aligned team maintains full ownership of building,
running, and fixing their application in production. The platform team provides inter‐
nal services to reduce the cognitive load that would be required from stream-aligned
teams to develop these underlying services.
The platform simplifies otherwise complex technology and reduces cognitive load for
teams that use it.

—Matthew Skelton and Manuel Pais, Team Topologies

Platforms are designed one interaction at a time. Thus, the design of every platform
should start with the design of the core interaction that it enables between producers
and consumers. The core interaction is the single most important form of activity
that takes place on a platform—the exchange of value that attracts most users to the
platform in the first place.1

—Geoffrey G. Parker et al., Platform Revolution)

A platform has a few key objectives that I like to take away and apply to data mesh:

Enable autonomous teams to get value from data
A common characteristic that we see is the ability to enable teams who use
the platform to complete their work and achieve their outcomes with a sense
of autonomy and without requiring another team to get engaged directly in
their workflow, e.g., through backlog dependencies. In the context of data mesh,
enabling domain teams with new responsibilities of sharing analytical data, or
using analytical data for building ML-based products, in an autonomous way, is a
key objective of a data mesh platform. The ability to use the platform capabilities
through self-serve APIs is critical to enable autonomy.

Exchange value with autonomous and interoperable data products
Another key aspect of a platform is to intentionally design what value is being
exchanged and how. In the case of data mesh, data products are the unit of value
exchange, between data users and data providers. A data mesh platform must
build in the frictionless exchange of data products as a unit of value in its design.
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Accelerate exchange of value by lowering the cognitive load
In order to simplify and accelerate the work of domain teams in delivering
value, platforms must hide technical and foundational complexity. This lowers
the cognitive load of the domain teams to focus on what matters; in the case of
data mesh, this is creating and sharing data products.

Scale out data sharing
Data mesh is a solution offered to solve the problem of organizational scale
in getting value from their data. Hence, the design of the platform must cater
for scale: sharing data across main domains within the organization, as well as
across boundaries of trust outside of the organization in the wider network of
partners. One of the blockers to this scale is the lack of interoperability of data
sharing, securely, across multiple platforms. A data mesh platform must design
for interoperability with other platforms to share data products.

Support a culture of embedded innovation
A data mesh platform supports a culture of innovation by removing activities
that are not directly contributing to the innovation, by making it really easy to
find data, capture insights, and use data for ML model development.

Figure 4-3 depicts these objectives applied to an ecosystem of domain teams sharing
and using data products.

Figure 4-3. Objectives of the data mesh platform

Now, let’s talk about how a data mesh platform achieves these objectives.
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Enable Autonomous Teams to Get Value from Data
In designing the platform, it is helpful to consider the roles of platform users and
their journey in sharing and using data products. The platform can then focus on
how to create a frictionless experience for each journey. For example, let’s consider
two of the main personas of the data mesh ecosystem: data product developers and
data product users. Of course, each of those personas includes a spectrum of people
with different skill sets, but for this conversation we can focus on the aspects of their
journeys that are common across this spectrum. There are other roles such as data
product owner whose journey is as important in achieving the outcome of creating
successful data products; favoring brevity, I leave them out of this example.

Enable data product developers
The delivery journey of a data product developer involves developing a data product;
testing, deploying, monitoring, and updating it; and maintaining its integrity and
security—with continuous delivery in mind. In short, the developer is managing the
life cycle of a data product, working with its code, data, and policies as one unit. As
you can imagine, there is a fair bit of infrastructure that needs to be provisioned to
manage this life cycle.

Provisioning and managing the underlying infrastructure for life cycle management
of a data product requires specialized knowledge of today’s tooling and is difficult
to replicate in each domain. Hence, the data mesh platform must implement all
necessary capabilities allowing a data product developer to build, test, deploy, secure,
and maintain a data product without worrying about the underlying infrastructure
resource provisioning. It must enable all domain-agnostic and cross-functional
capabilities.

Ultimately, the platform must enable the data product developer to just focus on the
domain-specific aspects of data product development:

• Transformation code, the domain-specific logic that generates and maintains the•
data

• Build-time tests to verify and maintain the domain’s data integrity•
• Runtime tests to continuously monitor that the data product meets its quality•

guarantees
• Developing a data product’s metadata such as its schema, documentation, etc.•
• Declaration of the required infrastructure resources•
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The rest must be taken care of by the data mesh platform, for example, infrastructure
provisioning—storage, accounts, compute, etc. A self-serve approach exposes a set
of platform APIs for the data product developer to declare their infrastructure needs
and let the platform take care of the rest. This is discussed in detail in Chapter 14.

Enable data product users
Data users’ journey—whether analyzing data to create insights or developing machine
learning models—starts with discovering the data. Once the data is discovered, they
need to get access to it, and then understand it and deep dive to explore it further.
If the data has proven to be suitable, they will continue to use it. Using the data
is not limited to one-time access; the consumers continue receiving and processing
new data to keep their machine learning models or insights up to date. The data
mesh platform builds the underlying mechanisms that facilitate such a journey and
provides the capabilities needed for data product consumers to get their job done
without friction.

For the platform to enable this journey, autonomously, it must reduce the need for
manual intervention. For example, it must remove the need to chase the team that
created the data or the governance team to justify and get access to the data. The
platform automates the process that facilitates requests for access and grants access
based on automated evaluation of the consumer.

Exchange Value with Autonomous and Interoperable Data Products
An interesting lens on the data mesh platform is to view it as a multisided platform
—one that creates value primarily by enabling direct interactions between two (or
more) distinct parties. In the case of data mesh, those parties are data product
developers, data product owners, and data product users.

This particular lens can be a source of unbounded creativity for building a platform
whose success is measured directly by exchanging value, i.e., data products. The value
can be exchanged on the mesh, between data products, or at the edge of the mesh,
between the end products, such as an ML model, a report, or a dashboard, and the
data products. The mesh essentially becomes the organizational data marketplace.
This particular data mesh platform characteristic can be a catalyst for a culture
change within the organization, promoting sharing to the next level.

As discussed in the previous section, an important aspect of exchanging value is to
be able to do that autonomously, without the platform getting in the way. For data
product developers, this means being able to create and serve their data products
without the constant need for hand-holding or dependency on the platform team.
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Create higher-order value by composing data products
The exchange of value goes beyond using a single data product and often extends
to the composition of multiple data products. For example, the interesting insights
about Daff ’s listeners are generated by cross-correlating their behavior while
listening to music, the artists they follow, their demographic, their interactions with
social media, the influence of their friends network, and the cultural events that
surround them. These are multiple data products and need to be correlated and
composed into a matrix of features.

The platform makes data product compatibility possible. For example, platforms
enable data product linking—when one data product uses data and data types
(schema) from another data product. For this to be seamlessly possible, the platform
provides a standardized and simple way of identifying data products, addressing data
products, connecting to data products, reading data from data products, etc. Such
simple platform functions create a mesh of heterogeneous domains with homogeneous
interfaces. I will cover this in Chapter 13.

Accelerate Exchange of Value by Lowering the Cognitive Load
Cognitive load was first introduced in the field of cognitive science as the amount
of working memory needed to hold temporary information to solve a problem or
learn.2 There are multiple factors influencing the cognitive load, such as the intrinsic
complexity of the topic at hand or how the task or information is presented.

Platforms are increasingly considered a way of reducing the cognitive load of devel‐
opers to get their job done. They do this by hiding the amount of detail and informa‐
tion presented to the developer: abstracting complexity.

As a data product developer, I should be able to express what my domain-agnostic
wishes are without describing exactly how to implement them. For example, as a
developer I should be able to declare the structure of my data, its retention period,
its potential size, and its confidentiality class and leave it to the platform to create
the data structures, provision the storage, perform automatic encryption, manage
encryption keys, automatically rotate keys, etc. This is domain-agnostic complexity
that as a data developer or user I should not be exposed to.

There are many techniques for abstracting complexity without sacrificing configura‐
bility. The following two methods are commonly applied.
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Abstract complexity through declarative modeling
Over the last few years, operational platforms such as container orchestrators, e.g.,
Kubernetes, or infrastructure provisioning tools, e.g., Terraform, have established
a new model for abstracting complexity through declarative modeling of the target
state. This is in contrast with other methods such as using imperative instructions
to command how to build the target state. Essentially, the former focuses on the
what, and the latter focuses on the how. This approach has been widely successful in
making the life of a developer much simpler.

In many scenarios declarative modeling hits limitations very quickly. For example,
defining the data transformation logic through declarations reaches a diminishing
return as soon as the logic gets complex.

However, systems that can be described through their state, such as provisioned
infrastructure, lend themselves well to a declarative style. This is also true about the
data mesh infrastructure as a platform. The target state of infrastructure to manage
the life cycle of a data product can be defined declaratively.

Abstract complexity through automation
Removing the human intervention and manual steps from the data product developer
journey through automation is another way to reduce complexity, particularly com‐
plexity arising from manual errors through the process. Opportunities to automate
aspects of a data mesh implementation are ubiquitous. The provisioning of the
underlying data infrastructure itself can be automated using infrastructure as code3

techniques. Additionally, many actions in the data value stream, from production to
consumption, can be automated.

For example, today the data certification or verification approval process is often
done manually. This is an area of immense opportunity for automation. The platform
can automate verifying the integrity of data, apply statistical methods in testing the
nature of the data, and even use machine learning to discover unexpected outliers.
Such automation removes complexity from the data verification process.

Scale Out Data Sharing
One issue I’ve noticed in the existing big data technology landscape is the lack of
standards for interoperable solutions that lead to data sharing at scale, for example,
lack of a unified model for authentication and authorization when accessing data,
absence of standards for expressing and transmitting privacy rights with data, and
lack of standards in presenting temporality aspects of data. These missing standards
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inhibit scaling the network of usable data beyond the boundaries of organizational
trust.

Most importantly, the data technology landscape is missing the Unix philosophy:

This is the Unix philosophy: Write programs that do one thing and do it well. Write
programs to work together…

—Doug McIlroy

I think we got incredibly lucky with very special people (McIlroy, Ritchie, Thompson,
and others) seeding the culture, the philosophy, and the way of building software in
the operational world. That’s why we have managed to build powerfully scaled and
complex systems through loose integration of simple and small services.

For some reason, we have abandoned this philosophy when it comes to big data sys‐
tems, perhaps because of those early assumptions (see “Characteristics of Analytical
Data Architecture” on page 126) that seeded the culture. Perhaps, because at some
point we decided to separate data (the body) from its code (the soul), which led to
establishing a different philosophy around it.

If a data mesh platform wants to realistically scale out sharing data, within and
beyond the bounds of an organization, it must wholeheartedly embrace the Unix
philosophy and yet adapt it to the unique needs of data management and data
sharing. It must design the platform as a set of interoperable services that can be
implemented by different vendors with different implementations yet play nicely with
the rest of the platform services.

Take observability as an example of a capability that the platform provides—the
ability to monitor the behavior of all data products on the mesh and detect any
disruptions, errors, and undesirable access, and notify the relevant teams to recover
their data products. For observability to work, there are multiple platform services
that need to cooperate: the data products emitting and logging information about
their operation; the service that captures the emitted logs and metrics and provides
a holistic mesh view; the services that search, analyze, and detect anomalies and
errors within those logs; and the services that notify the developers when things go
wrong. To build this under the Unix philosophy we need to be able to pick and
choose these services and connect them together. The key in simple integration of
these services is interoperability,4 a common language and APIs by which the logs and
metrics are expressed and shared. Without such a standard, we fall back to a single
monolithic (but well-integrated) solution that constrains access to data to a single
hosting environment. We fail to share and observe data across environments.
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Support a Culture of Embedded Innovation
To date, continuous innovation must arguably be one of the core competencies of
any business. Eric Ries introduced the Lean Startup5 to demonstrate how to scientif‐
ically innovate through short and rapid cycles of build-measure-learn. The concept
has since been applied to the larger enterprise through Lean Enterprise6—a scaled
innovation methodology.

The point is that to grow a culture of innovation—a culture of rapidly building,
testing, and refining ideas—we need an environment that frees its people from
unnecessary work and accidental complexity and friction and allow them to experi‐
ment. The data mesh platform removes unnecessary manual work, hides complexity,
and streamlines the workflows of data product developers and users, to free them to
innovate using data. A simple litmus test to assess how effective a data mesh platform
is in doing that is to measure how long it takes for a team to dream up a data-driven
experiment and get to use the required data to run the experiment. The shorter the
time, the more mature the data mesh platform has become.

Another key point is: who is empowered to do the experiments? The data mesh
platform supports a domain team to innovate and perform data-driven experiments.
The data-driven innovations are no longer exclusive to the central data team. They
must be embedded into each domain team in developing their services, products, or
processes.

Transition to a Self-Serve Data Mesh Platform
So far, I have talked about the key differences between existing data platforms and
data mesh and covered the main objectives of the data mesh platform. Here, I’d like to
leave you with a few actions you can take in transitioning to your data mesh platform.

Design the APIs and Protocols First
When you begin your platform journey, whether you are buying, building, or very
likely both, start with selecting and designing the interfaces that the platform exposes
to its users. The interfaces might be programmatic APIs. There might be command-
line or graphic interfaces. Either way, decide on interfaces first and then the imple‐
mentation of those through various technologies.

This approach is well-adopted by many cloud offerings. For example, cloud blob
storage providers expose REST APIs7 to post, get, or delete objects. You can apply this
to all capabilities of your platform.
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In addition to the APIs, decide on the communication protocols and standards that
enable interoperability. Taking inspirations from internet—the one example of a mas‐
sively distributed architecture—decide on the narrow waist8 protocols. For example,
decide on the protocols governing how data products express their semantic, in what
format they encode their time-variant data, what query languages each support, what
SLOs each guarantee, and so on.

Prepare for Generalist Adoption
I discussed earlier that a data mesh platform must be designed for the generalist
majority (“Designed for a Generalist Majority” on page 52). Many organizations
today are struggling to find data specialists such as data engineers, while there is a
large population of generalist developers who are eager to work with data. The frag‐
mented, walled, and highly specialized world of big data technologies have created an
equally siloed fragment of hyper-specialized data technologists.

In your evaluation of platform technologies, favor the ones that fit better with a
natural style of programming known to many developers. For example, if you are
choosing a pipeline orchestration tool, pick the ones that lend themselves to simple
programming of Python functions—something familiar to a generalist developer—
rather than the ones that try to create yet another domain-specific language (DSL) in
YAML or XML with esoteric notations.

In reality, there will be a spectrum of data products in terms of their complexity,
and a spectrum of data product developers in terms of their level of specializations.
The platform must satisfy this spectrum to mobilize data product delivery at scale.
In either case, the need for applying evergreen engineering practices to build resilient
and maintainable data products remains necessary.

Do an Inventory and Simplify
The separation of the analytical data plane and the operational plane has left us with
two disjointed technology stacks, one dealing with analytical data and the other for
building and running applications and services. As data products become integrated
and embedded within the operational world, there is an opportunity to converge the
two platforms and remove duplicates.

In the last few years the industry has experienced an overinvestment in technologies
that are marketed as data solutions. In many cases their operational counterparts are
perfectly suitable to do the job. For example, I have seen a new class of continuous
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integration and continuous delivery (CI/CD) tooling marketed under DataOps. Eval‐
uating these tools more closely, they hardly offer any differentiating capability that the
existing CI/CD engines can’t offer.

When you get started, take an inventory of platform services that your organization
has adopted and look for opportunities to simplify.

I do hope that the data mesh platform is a catalyst in simplification of the technology
landscape and closer collaboration between operational and analytical platforms.

Create Higher-Level APIs to Manage Data Products
The data mesh platform must introduce a new set of APIs to manage data products
as a new abstraction (“Managing Autonomous and Interoperable Data Products” on
page 51). While many data platforms, such as the services you get from your cloud
providers, include lower-level utility APIs—storage, catalog, compute—the data mesh
platform must introduce a higher level of APIs that deal with a data product as an
object.

For example, consider APIs to create a data product, discover a data product, connect
to a data product, read from a data product, secure a data product, and so on. See
Chapter 9 for the logical blueprint of a data product.

When establishing your data mesh platform, start with high-level APIs that work
with the abstraction of a data product.

Build Experiences, Not Mechanisms
I have come across numerous platform building/buying situations, where the articu‐
lation of the platform is anchored in mechanisms it includes, as opposed to experien‐
ces it enables. This approach in defining the platform often leads to bloated platform
development and adoption of overambitious and overpriced technologies.

Take data cataloging as an example. Almost every platform I’ve come across has a
data catalog on its list of mechanisms, which leads to the purchase of a data catalog
product with the longest list of features, and then overfitting the team’s workflows to
fit the catalog’s inner workings. This process often takes months.

In contrast, your platform can start with the articulation of the single experience of
discovering data products. Then, build or buy the simplest tools and mechanisms that
enable this experience. Then rinse, repeat, and refactor for the next experience.
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Begin with the Simplest Foundation, Then Harvest to Evolve
Given the length of this chapter discussing the objectives and unique characteristics
of a data mesh platform, you might be wondering, “Can I even begin to adopt data
mesh today, or should I wait some time to build the platform first?” The answer is
to begin adopting a data mesh strategy today, even if you don’t have a data mesh
platform.

You can begin with the simplest possible foundation. Your smallest possible foun‐
dation framework is very likely composed of the data technologies that you have
already adopted, especially if you are already operating analytics on the cloud. The
bottom-layer utilities that you can use as the foundation include the typical storage
technologies, data processing frameworks, federated query engines, and so on.

As the number of data products grows, standards are developed, and common ways
of approaching similar problems across data products are discovered. Then you will
continue to evolve the platform as a harvested framework by collecting common
capabilities across data products and domain teams.

Remember that the data mesh platform itself is a product. It’s an internal product—
though built from many different tools and services from multiple vendors. The
product users are the internal teams. It requires technical product ownership, long-
term planning, and long-term maintenance. Though it continues to evolve and goes
through evolutionary growth, its life begins today as a minimum viable product
(MVP).9

Recap
Data mesh’s principle of a self-serve platform comes to the rescue to lower the cogni‐
tive load that the other two principles impose on the existing domain engineering
teams: own your analytical data and share it as a product.

It shares common capabilities with the existing data platforms: providing access to
polyglot storage, data processing engines, query engines, streaming, etc. However,
it differentiates from the existing platforms in its users: autonomous domain teams
made up primarily of generalist technologists. It manages a higher-level construct of a
data product encapsulating data, metadata, code, and policy as one unit.
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Its purpose is to give domain teams superpowers, by hiding low-level complexity
behind simpler abstractions and removing friction from their journeys in achieving
their outcome of exchanging data products as a unit of value. And ultimately it
frees up the teams to innovate with data. To scale out data sharing, beyond a single
deployment environment or organizational unit or company, it favors decentralized
solutions that are interoperable.

I will continue our deep dive into the platform in Chapter 10 and talk about specific
services a data mesh platform could offer.
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CHAPTER 5

Principle of Federated
Computational Governance

For peace to reign on Earth, humans must evolve into new beings who have learned to see
the whole first.

—Immanuel Kant

A refreshed look at data governance is the missing and final piece to make data mesh
work. So far, data mesh expects independent teams to own and serve their analytical
data. It expects this data to be served as a product, accompanied by behavior that
enriches the experience of the data consumer, to discover, trust, and use it for
multiple purposes. And it heavily relies on a new set of self-serve data infrastructure
capabilities to make it all feasible. Governance is the mechanism that assures that
the mesh of independent data products, as a whole, is secure, trusted, and most
importantly delivers value through the interconnection of its nodes.

I must admit, governance is one of those words that makes me, and perhaps many,
feel uneasy. It evokes memories of central, rigid, authoritative decision-making sys‐
tems and control processes. In the case of data governance, it evokes memories of
central teams and processes that become bottlenecks in serving data, using data, and
ultimately getting value from data.

Data governance teams and processes have noble objectives: ensuring the availability
of safe, high quality, consistent, compliant, privacy-respecting, and usable data across
an organization with managed risk. These objectives are well intended and necessary.
However, traditionally, our approach in achieving them has been a point of friction.
In the past, governance has relied heavily on manual interventions, complex central
processes of data validation and certification, and establishing global canonical modeling
of data with minimal support for change, often engaged too late after the fact. This
approach to governance simply won’t work for the decentralized data mesh.
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Data mesh governance in contrast embraces constant change to the data landscape.
It delegates the responsibility of modeling and quality of the data to individual
domains, and heavily automates the computational instructions that assure data is
secure, compliant, of quality, and usable. Risk is managed early in the life cycle
of data, and throughout, in an automated fashion. It embeds the computational
policies in each and every domain and data product. Data mesh calls this model of
governance a federated computational governance.

Federated and computational governance is a decision-making model led by the
federation of domain data product owners and data platform product owners, with
autonomy and domain-local decision-making power, while creating and adhering to
a set of global rules—rules applied to all data products and their interfaces. The global
rules are informed and enabled by global specializations such as legal and security
to ensure a trustworthy, secure, and interoperable ecosystem. It addresses what is
considered one of the most common mistakes1 of today’s data governance: being an
IT initiative with an organizational model that parallels business and is not embedded
within the business.

Looking at the word governance, its definition softens from “to rule with authority”
to its original meaning of “to steer and guide—a vessel.” I chose to keep the word
governance in the data mesh vocabulary, but I intend for it to carry its original
meaning and not its later definitions.

In addition to the existing objectives of data governance, data mesh must address
a new set of concerns. Distribution of data ownership to individual domains raises
concerns around the interoperability of the data and standardization of data commu‐
nication, e.g., standardization of data presentation and querying across all domains.
Interoperability is an essential characteristic of the mesh to satisfy the majority of
data use cases where insights and intelligence are derived from the correlation of
independent data products on the mesh, where we create unions, find intersections,
or perform other graphs or set operations on data products at scale.

Returning to the Daff example, for Daff to provide a new set of services around
emerging artists they need to first discover who the emerging artists are. They need
to be able to correlate data across social media platforms mentioning the emerging
artists, looking at the trends of subscribers listening to artists and artist profiles.
Without some level of data product interoperability this task would be impossible.

Not only do we need global standardizations to allow correlating independent data
products, but we need to be able to do it easily—with a consistent experience—and
securely, without compromising confidential information. Data governance concerns
extend to make such a seamless and consistent experience possible.
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In this chapter, I introduce how to implement data governance in the context of data
mesh. The focus of this chapter is the high-level modeling of the data governance
team and function, and not the individual concerns that governance must assure, like
privacy, security, GDPR, or other policies. In short, in this chapter I aim to address
the uneasy feeling of loss of control and indeterminism that a decentralized data
ownership model like data mesh can arise in many of my tenured data steward and
governance colleagues.

To guide tailoring data governance to your organization according to the federated
computational model, in this chapter, I introduce three complementary and related
components: applying systems thinking to a complex system of data products and
teams, federation of the operating model, and computational execution of controls and
standards by the underlying platform. Figure 5-1 shows the interaction between these
three components of data mesh governance.

Figure 5-1. Components of data mesh federated computational governance

Let’s unpack each.

Apply Systems Thinking to Data Mesh Governance
Placing a system in a straitjacket of constancy can cause fragility to evolve.

—C. S. Holling

Data mesh architecture creates a complex network of interconnected systems:
domain-oriented data products and data owners, interacting with each other,
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operational applications, and the underlying platform. It follows a distributed system
architecture, a collection of independent data products, with independent life cycles,
built and deployed by independent teams. For these independent systems to act
as cooperative and collaborative members of an ecosystem, data mesh requires a
governance model that embraces systems thinking. Systems thinking, as described by
Peter Senge,2 is the discipline of “seeing the whole,” shifting our focus “from parts
to the organization of parts, recognizing interaction of the parts are not static and
constant, but dynamic processes.” Similarly, data mesh governance must see the mesh
more than the sum of its parts and as a collection of interconnected systems—data
products, data product providers, data product consumers, and platform teams and
services.

Systems thinking applied to data mesh must pay attention to and take advantage of
the following characteristics, as demonstrated by Figure 5-2.

Figure 5-2. Leveraging data mesh characteristics when applying systems thinking
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Maintain Dynamic Equilibrium Between Domain Autonomy and
Global Interoperability
One of the main objectives of data mesh governance, through applying system
thinking, is to balance the state of the mesh between decentralization of domains
and their autonomy with global interoperability and just-enough mesh-level harmony.
While the governance model respects the local control and autonomy of each domain
—accountable for the quality and integrity of their data and responsible to share their
data with the rest of the ecosystem—it must balance that with a global-level security,
legal conformance, interoperability standards, and other mesh-level policies applied
to all data products. The art of governing a data mesh ecosystem is in maintaining an
equilibrium between local (domain) optimization and global (the mesh) optimization.

For example, the governance model needs to balance the equilibrium between
allowing each domain to define the model and schema of their own data product
with autonomy—a case of local optimization—while making sure the data product
model is standardized enough to be joined and stitched with other domains’ data
products—a case of global optimization. The governance model needs to strike a
balance between allowing each domain data product owner to be accountable for the
security of their data product—a case of decentralization—while making sure all data
products are consistently and reliably secure—a case of centralization.

To continuously influence the delicate balance, we can apply systems thinking. We
can look into the work of system thinkers such as Donella Meadows. As Donella
describes in her classic book, Thinking in Systems, using elements of systems think‐
ing, a system can reach the state of dynamic equilibrium—while information is
continuously flowing, the desired observed state remains the same, like a tub of
water with equal inflows and outflows. Maintaining a dynamic equilibrium demands
continuously adjusting the behavior in systems using leverage points and feedback
loops. Leverage points are places in the system where a small change could lead to
a large shift in behavior. Feedback loops are system structures that either balance
or reinforce a change in the state of the system. Let’s look at a few examples where
data mesh governance can use leverage points and feedback loops to balance the
autonomy of the domains with the global harmony and function of the mesh.

Introduce feedback loops
Feedback loops in a system are greatly helpful in adjusting the behavior and the state
of the system.

For example, one of the common concerns I hear from the existing governance
teams is around “preventing data product duplication and redundant work,” basically
controlling the chaos that may arise from each domain team making independent
decisions and creating duplicate data products. This of course stems from scars they
have incurred over the years, seeing teams copying data into many isolated and
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abandoned databases, each for a single use. Traditionally, this problem has been
solved by injecting governance control structures that qualify and certify that the
data is not a duplicate before it can be used. Despite best intentions, this creates a
bottleneck that simply doesn’t scale out in a complex system like data mesh.

Instead, we can introduce two feedback loops to get the same outcome without
creating bottlenecks. As you will see in Part IV, every data product on the mesh, with
the help of the platform, is equipped with self-registration, observability, and discov‐
erability capabilities. Hence, all data products are known to the users of the mesh
from the moment of creation throughout their lifetime until they retire. Now imagine
the kind of observability and discovery information that each data product supplies—
their semantic, syntax, how many users are using them, the users’ satisfaction rating,
quality metrics, timeliness, completeness, and retention measures. The mesh can use
this information to identify duplicate data products and provide additional insights
such as identifying groups of data products that serve similar information, and
comparison of these data products based on their satisfaction rating, number of users,
completeness, etc. This information and the insights made available to the users
create two new feedback loops.

The platform “search and discovery” feature can give lower visibility to the duplicate
data products that don’t have high ratings; as a result, they get gradually degraded on
the mesh and hence less used. The platform can inform the data product owners of
the state of their data products and nudge them to prune out unused and duplicate
data products in favor of others. This mechanism is called a negative or balancing
feedback loop. The intention of this feedback loop is self-correction, in this case
reducing the number of duplicate, low-quality, and less usable data products.

The second feedback loop uses the same information to promote high-quality and
highly usable data products with happy users. The mesh discovery function gives
higher search ranking to these data products, which then results in higher visibility to
the users and increased opportunity for selection and use. This is a positive feedback
loop that reinforces the success of useful data products, known as “success to the
successful.”

Figure 5-3 shows the information flow and the feedback loops to keep the system in
a state of equilibrium, keep the useful and helpful data products in, and degrade and
remove duplicate and redundant data products. The net result of these feedback loops
is the outcome of “fewer duplicate data products.” This is a kind of automated garbage
collection.
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Figure 5-3. Example of feedback loops to maintain a state of dynamic equilibrium

Now, let’s look at the leverage points to make sure system balance is maintained.

Introduce leverage points
In her article, Donella introduces 12 aspects of the system that can be used as leverage
points, such as controlling the parameters and metrics, controlling the strength of the
feedback loops, changing the goals of the system, and so on. These are a great starting
point in experimenting with the leverage points that create a high-performing, com‐
plex data mesh system.

Let’s follow the previous example. Earlier, I introduced the self-reinforcing feedback
loop for successful data products. Data products, based on the users’ satisfaction and
growth, get higher visibility and ranking in the search. Hence, the more successful
a data product is, the more opportunity for usage it gets, and as a result it becomes
more successful. If this feedback loop is left unchecked, over time we might see
undesired side effects: successful data products become bloated, slow, and fragile to
change; become a god-like dependency for many other downstream data products;
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and ultimately slow down progress of the mesh as a whole. This is where parameters
and measurements can be used as short-term and quick leverage points and change
behavior fast. In this case, the mesh governance can place upper bounds on the lead
time to change a data product to detect data products that are hard to change, or
detect an uptick in change fail ratio of more fragile products, and that combined
with the number of users and downstream dependencies can identify bloated data
products that need to change. The job of a data product owner is to keep their data
products healthy, and these are the metrics of health. This leads to self-adjusting by
breaking down bloated data products into simpler ones.

Another type of leverage point is the goals of the system. Everything in the system
follows a goal that is articulated clearly, repeated, measured, and insisted upon. This
perhaps is one of the most critical leverage points that data mesh governance can put
in place to balance the state of the system. But there are some challenges with system
goals as leverage points. Jay W. Forrester at MIT, the founder of system dynamics, is
quoted as saying that “people (we) know intuitively where the leverage points are” but
often “everyone is trying very hard to push it in the wrong direction!”

Let me give you an example of a goal in the wrong direction. Many organizations
see the value of the mesh in the number of data products. The larger the mesh
and interconnectivity between the data products, potentially the higher value we can
leverage by exploiting the available data. However, if the goal of the system becomes
“the number of data products,” early in the development of the mesh, this leverage
point results in a focus on generating data, and not necessarily generating value from
the data. This is consequential particularly early in the exploration phase of data
mesh evolution (“Evolutionary Execution” on page 286), where organizations are
still establishing the practices and creating the foundation or the blueprint of their
data products. Overproduction of data products early on leads to a higher cost of
exploration, and in fact it becomes an inhibitor to an exploration of what works best.
This is a goal pushed in the wrong direction at the wrong time. Conversely, once the
platform capabilities are established and the organization has worked out what good
looks like during the expansion and growth of data mesh, the goal can shift to the
increased population of data products. The governance can use the “rate of new data
products” as a leverage point to focus on the growth and diversity of data.

Embrace Dynamic Topology as a Default State
Data mesh is a dynamic system with a continuously changing topology. The shape
of the mesh continuously changes. New data products get created, old data products
retire, and existing data products continue to morph their logic, data, and structure.
The governance model must work with continuous change across the mesh, without
interrupting the experience of the mesh consumers. Governance designed with this
assumption as the default state of the system, with a pinch of complexity theory
applied, looks for simple rules that can underlie a complex adaptive mesh.
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For example, in Part IV I introduce the rule of applying bitemporality to all aspects
of a data product. All elements of a data product can be a function of time—data,
metadata, schema, semantic, etc.—and they change with time. Change of the data
product as a function of the passage of time is a basic simple rule that embraces
the dynamic nature of the system. Change becomes a default parameter, not an
exception.

Utilize Automation and the Distributed Architecture
Distributed architecture is the foundation for building digital ecosystems, in this case
data mesh. The governance of an ecosystem such as data mesh needs to rely on
a distributed architecture that enables independent life cycle management of each
data product while allowing loose interconnectivity and integration between them.
The intention behind this architecture is to limit central components and reduce the
opportunity of creating fragile bottlenecks as the ecosystem grows. The execution of
governance must fit in a distributed architecture, operating in a peer-to-peer mode,
instead of relying on single points of control.

A core component of the data mesh ecosystem is the environment within which
data products execute, the underlying platform that manages the data products life
cycle, from build to deployment to runtime. Most governance system elements such
as the leverage points and feedback loop (“Maintain Dynamic Equilibrium Between
Domain Autonomy and Global Interoperability” on page 71) described earlier rely
on automated mechanisms built by the platform and embedded into the distributed
architecture connecting data products. The section “Apply Computation to the Gov‐
ernance Model” on page 83 unpacks the opportunities for automation.

Apply Federation to the Governance Model
Organizationally, by design, data mesh is a federation. It has an organizational struc‐
ture with smaller divisions, the domains, where each has a fair amount of internal
autonomy. The domains control and own their data products. They control how their
data products are modeled and served. The domains select what SLOs their data
products guarantee, and ultimately they are responsible for the satisfaction of their
data products’ consumers.

Despite the autonomy of the domains, there are a set of standards and global policies
that all domains must adhere to as a prerequisite to be a member of the mesh—a
functioning ecosystem.

Data mesh proposes a governance operating model that benefits from federated
decision making. It suggests that the governance team organizes itself as a federated
group of domain and platform stakeholders. For the group to manage its operation, it
defines the following operating elements (illustrated in Figure 5-4):
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Federated team (“Federated Team” on page 77)
Composed of domain product owners, subject matter experts such as legal and
security

Guiding values (“Guiding Values” on page 78)
Managing the scope and guiding what good looks like

Policies (“Policies” on page 81)
Security, conformance, legal, and interoperability guidelines and standards gov‐
erning the mesh

Incentives (“Incentives” on page 82)
Leverage points that balance local and global optimization

Platform automations (“Apply Computation to the Governance Model” on page 83)
Protocols, standards, policies as code, automated testing, monitoring and recov‐
ery of the mesh governance

Figure 5-4. Federated computational governance operating model

This operating model is a draft and starting point for you to refine within your
organization. Let’s look a bit more closely at each of these operating model elements.
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Federated Team
Data mesh governance is a collective responsibility, yet with clear accountability of
domains; unlike many existing governance functions, it is not outsourced to a third
party. The governance is composed of a cross-functional team of representatives
from domains, as well as platform experts and subject matter experts from security,
compliance, legal, etc.

The following section lists some of the basic and essential roles that make up a
multidisciplinary federated team. The team collectively takes the responsibility of:

• Deciding what policies must be implemented by all data products•
• How the platform must support these policies computationally•
• How data products adopt the policies•

Domain representatives
Data product owners are the long-term owners of the domains’ data products. They
intrinsically care about the longevity and success of their data product as a member of
the mesh. They have accountability for the security, quality, and integrity of their data.
Given the guiding principle of executing decisions locally, the data product owners are
ultimately accountable for making sure the global governance decisions are executed
at the level of every single data product. Early buy-in and contribution of domains to
define the global policies is crucial in adoption of them.

Their role is different from what is traditionally known as data stewards as the
main accountability and responsibility lives within a business-aligned-tech domain.
They are a member of a cross-functional team that is accountable for the success
of the business domain, and one of those success criteria is to manage and share
their analytical data as a product, as well as use other data products in embedding
ML/analytics in their business processes and applications.

Their role as a member of the governance team is contributing to the definition of
policies that govern the data products on the mesh.

Data platform representatives
Nearly all governance decisions rely on platform automation. This demands close
collaboration between the platform team and the governance function. The automa‐
tions may be in the form of enablement, monitoring, or recovery. For example, the
platform can automate de-identification of personally identifiable information (PII)
during write/read of data, or implement standardized APIs for accessing each data
product’s discoverability information. Given the importance of the platform in policy
automation, platform representatives must be part of the governance team, with roles
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such as data platform product owner and platform architect. The platform product
owner (“The platform product owner” on page 326) designs the experience and
prioritizes the platform features—the what—and the platform architect designs the
implementation of computational policy configuration and execution—the how.

Subject matter experts
Domains are responsible for ensuring their data products are in compliance and
secure. They either have the subject matter expertise internally or the governance
team offers experts who know the expected, security, compliance and legal concerns.

Legal teams often are the source of the latest data privacy regulations. These regu‐
lations need to be translated into platform capabilities and applied to all data prod‐
ucts. Global governance creates the structure for continuous and close collaboration
between other subject matter experts to inform and influence the prioritization and
design of platform features and their adoption by all data products.

Facilitators and managers
Bringing a group of people from different disciplines and scope of influence with
somewhat competing priorities is no easy task. It requires allocated management and
administrative roles to facilitate and support the process of governance under the
federated and computational model.

Guiding Values
The cornerstone of any governance system is the clarity of the value system that
guides how decisions are made and what their scope of influence is. These guides
influence how to decide whether the global governance function should bother with a
particular concern, or if there is a conflict in decision making, how to resolve it.

The following is a demonstrative list of guides and representative of the spirit of the
data mesh value system.

Localize decisions and responsibility close to the source
Data mesh gives the ownership of the decision and accountability for execution to the
people who have the most relevant knowledge and scope of influence. For example,
data mesh pushes the responsibility of assuring data quality to the domains. Contrary
to prior models, data quality is neither a centralized governance team concern nor
a downstream data team. Domains decide, define, and then guarantee the quality of
their data products. The same applies to domain data modeling. The modeling of
data products is left to the domains since they are best positioned to represent their
data as close to the reality of their business as possible.
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Identify cross-cutting concerns that need a global standard
While data mesh governance, by default, assumes that decisions should be made at
the most local level, there are often cross-cutting aspects of data products that require
global standards. Cross-cutting concerns include ensuring confidentiality compliance
with regulations, access control, and security. How these cross-cutting concerns are
implemented—how they are defined, configured, and applied—in a common way is
ideally something that individual data products influence but leave to the platform to
automate. If there is enough commonality between the individual data products or if
a concern affects all the data products based on regulations, the governance function
defines the hows globally, the platform automates it, and data products execute it.

For example, the execution of the “right to be forgotten” according to GDPR regula‐
tion is a cross-cutting concern applied to all data products. How and when such an
administrative function is triggered, and how each data product assures the execution
of this function, is a global concern as it applies equally to all data products.

Globalize decisions that facilitate interoperability
There is a subset of cross-cutting concerns that enable interoperability between
data products as well as interoperability between data products and the platform
components.

Imagine Daff is experimenting to find if there is a correlation between weather
conditions and listenership behavior, at a point in time. Exploiting a pattern
between the two can enhance its recommendation engine, perhaps recommending
melancholic music on rainy days. This requires querying and correlating two data
products, the near-real-time play events and hourly weather report files, on the
dimension of time.

In order to perform the query, the data products must standardize on a few things:

• Inclusion of the temporal dimensions in the data: this includes the timestamp•
of the real event or state (event time), e.g., the date of the weather, and the
timestamp when the data product has become aware of the event (processing
time). I will be discussing further details on this topic later in Part IV, “Design
the Data Quantum Architecture.”

• Standardization on the date and time representation, e.g., using the ISO 8601•
date and time format.

• Standardization of how the time dimension is represented in the query, e.g.,•
SQL:2011 standardizing SQL for temporal databases. Defining a consistent way
for encoding and querying temporal data allows users to run time-sensitive
queries and data processing across disparate data products.
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Identify consistent experiences that need a global standard
An imbalance between domain autonomy and global harmony can result in a frag‐
mented and disconnected experience for data users. Imagine you are a data scientist
and running an experiment that requires data about listeners across all domains:
subscribers, podcasts, play events, streams, concerts, etc. To run this experiment,
the data scientist first uses the platform’s search and discovery features to locate the
data products that know something about listeners. Then, the data scientist deep
dives into each of the data products to learn about them further, reading documen‐
tation, schemas, and other metadata. Naturally, each data product provides its own
documentation, schema, SLOs, etc. However, imagine if each data product chooses
a different format or technology to present documentation, schema, and metadata
to the data scientist. This experiment will be fragmented, and it will not be inviting
to run mesh-wide experiments. To provide a consistent experience of understanding
data products across the mesh, the decision of how data products encode and share
their semantic and syntax schema becomes a global concern. This decision will be
automated by the platform to provide a set of tools to create, verify, and share data
product schemas. Each data product utilizes the platform tooling to comply with this
global standard.

While this is an ideal state, given the dynamic nature (“Embrace Dynamic Topology
as a Default State” on page 74) of the mesh, it is not possible to guarantee that all
data products will be using the same schema language, or the same version of the
language, at a point in time. This is where systems thinking (“Apply Systems Thinking
to Data Mesh Governance” on page 69) nudges the system toward global consistency
over time.

Execute decisions locally
The global governance function makes decisions that have a radius of impact beyond
the internals of a single domain. While these decisions are made globally, they are
executed locally as close as possible to each domain’s data product.

For example, consider the global decision about how access to data products is
granted, revoked, and verified. While the decision on how we configure and apply
access control is made globally, the configuration of the access control policies is
encoded for each data product and evaluated and executed at the time of access
to a data product. A similar approach is taken in operational systems with the
implementation of a service mesh and zero trust architecture, where access control
policies are defined for each single service endpoint and enforced live at the time of
access to the endpoint.
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Policies
The output of a system of governance can be distilled to the definition of a set of
guides or rules, policies, that specify what good looks like and how to ensure it’s
maintained. In the case of data, for example, it can be distilled to what secure data
looks like and how security is maintained; the same goes for data accessibility, data
quality, modeling data, and many other cross-functional characteristics of data shared
on the mesh.

Local policies
Data mesh governance pushes the power of decision making and execution around
these policies as close as possible to the people who are affected by those decisions.
For example, execution of many traditional aspects of governance such as assuring
data quality, data modeling, and data integrity is shifted to people who are producing
the data in the first place, as close to the source as possible. These decisions are made
locally as local policies and executed locally.

For example, the decision around the timeliness of a play event is best made and
maintained by the player team. They know best how soon after an event has occurred
it can be reliably shared. The domain has the most-informed understanding of the
behavior of the player and its capabilities. That, combined with an understanding of
its data users, results in the player domain defining a local policy around the data
product’s guaranteed timeliness.

Global policies
Global policies apply consistently to all data products. They cover the seams, the
interconnectivity, and the gap between the data products. They impact the scope of
the mesh as a whole and not the internal implementation of a data product. Earlier,
our look at guiding values (“Guiding Values” on page 78) demonstrated how global
policies are identified.

Another decision that falls in the gap between data products is the decision of data
ownership: which team shall own a new data product. This also can be treated as a
global policy. In the case where the data product is closely representing the analytical
data produced from an operational system—it is source-aligned—the operational
team must own it. The player team building and hosting the player devices own the
player events data product. In the case of a fit-for-purpose data product, the team
whose use case is the primary consumer of the data can maintain and own the data
product. For example, the emerging artist business unit that has many use cases
for the data products around artist classification naturally owns it. However, the
ownership of the aggregate data products is not as clear. As an example, longitudinal
listener behavior as an aggregate of all listener touchpoints doesn’t naturally fit
into existing domains. In this case, the federated governance team can create a set
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of heuristics to help make such a decision: either an existing source domain like
listener is incentivized, or the marketing team is empowered to own it as the primary
consumers of it, or a new domain must be formed.

Ideally, we would want to minimize global policies to reduce friction. Implementing
and updating global policies that affect the mesh is hard. Limiting their number and
scope and relentlessly implementing them through automated platform capabilities
are our only options to make them effective.

Incentives
Bringing data mesh to life not only requires a shift in technology and architecture,
but also depends on an organizational transformation. Change in the data gover‐
nance operating model is one aspect of such transformation. In fighting through the
pain of change, motivation has a big role.

Incentives, as motivators, are leverage points (“Introduce leverage points” on page
73) that impact the behavior of the governance function, particularly in balancing
the priorities of the domain representatives between their local and global priorities.
A careful design of the incentives has an important role in getting the domain repre‐
sentatives to not only contribute to the definition of global policies but also execute
them within their scope of influence—domains. The incentive structure creates two
leverage points: global incentives that encourage building a richly interconnected
mesh of data products and not silos, and local incentives that encourage speed and
autonomy of individual domains.

The governance operating model must create, monitor, and continuously tune the
local and global incentives of their members. Keep in mind that getting leverage
points right requires experimentation and continuous tuning and is often counter‐
intuitive. The examples given in the following are experimental and extrinsic. In
Chapter 16, “Organization and Culture”, I will discuss the intrinsic motivators.

Introduce local incentives
Locally within domains, data product owners measure their success based on the
satisfaction and growth of their data product users. This encourages them to priori‐
tize work that leads to the creation of new data products for their consumers or the
addition of content to the existing ones. For example, the player team is incentivized
to provide various aggregations of play events that capture a larger audience of data
users. They are incentivized to not only provide play events to real-time data users,
but also play sessions that aggregate the listeners’ interactions over a longer period of
time for other data users.
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Local incentives are driven by product thinking, with the objective of creating suc‐
cessful data products. Introduce these local incentives to strengthen and increase
domain autonomy.

Introduce global incentives
Now let’s assume that the federated governance team has decided to standardize how
domain data products measure and share their data quality metrics. The governance
is introducing a new set of quality metrics that each data product must report
through a consistent set of APIs. This is a global policy that must apply to all data
products to achieve a mesh-level observability. However, from the perspective of
the domains’ product owners conforming to this policy and implementing the data
quality reporting APIs, it is somewhat in competition with their domain priorities,
building richer and featureful data products.

To resolve this conflict and encourage the domains to participate in global policies,
the incentives of data product owners must be augmented. In addition to their local
incentives, they need to be rewarded and motivated by the degree of adoption of
global policies. In this case, the measure of success for their data product must
include reporting its quality metrics based on the latest global policy.

Apply Computation to the Governance Model
In an optimal state of the mesh, the governance function is invisible. It’s out of the
way of data providers and consumers. It’s automated and abstracted by the platform,
embedded into each data product, and applied at the right moment. Let’s look at a few
ways of achieving this—what I call the computational governance.

The data mesh platform programmatically manages the life cycle of each data prod‐
uct. It executes each stage of a data product life cycle, such as build, test, deploy,
run, access, read, etc. It’s best positioned to enable data product developers and
data governance team members to define policies and execute them computationally,
at the right point in a data product life cycle. The platform is able to embed the
execution of these policies into each and every data product without friction. It’s
essential for the self-serve platform to abstract the complexity of executing various
policies and make it easy to do the right thing. Additionally, it’s necessary for the
platform to automatically and continuously verify that the policies are in place across
the mesh and notify if they are not.

In the operational plane, a similar computational governance has recently been
demonstrated by service mesh platforms. For example, Istio, an open source imple‐
mentation of a service mesh, embeds the configuration of traffic routing policies in
each endpoint of every single service and executes them locally right at the time of
making a request. A domain’s service developer simply defines the routing policies
around how many times they wish for their service to retry a failed request or
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when to time out an outstanding request. Beyond this declarative configuration of
the routing policy, the service developer does not need to do anything else. The
platform automatically executes the routing policies at the right time. Simplicity and
effectiveness of computational routing policy incentivizes all service developers to
build more resilient services without incurring extra overhead.

Let’s look at the different ways that the platform can support governance policies,
computationally: standards as code, policies as code, automated tests, and automated
monitoring.

Standards as Code
Many policies fall into the standards category—behavior, interfaces, and data struc‐
ture that is expected to be implemented in a consistent way across all data products.
Here are a few examples of standards that can be coded and supported by the
platform:

Data product discovery and observability interfaces
APIs that expose discoverability information, documentation, schema, and SLOs

Data product data interfaces
APIs that expose the data

Data and query modeling language
Modeling of semantics and syntax of data and the query language operating on
the data

Lineage modeling
Modeling of the traces of data flows and operations across connected data
products

Polysemes identification modeling
Modeling of identity systems that globally identify and address common business
concepts across different data products

Take the SLO APIs as an example. The platform can inject a sidecar (“Data Product
Sidecar” on page 165)—an execution context deployed with every single data product
that implements cross-cutting capabilities—to implement the SLO APIs consistently
for all data products.
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Policies as Code
All data products must implement global policies such as compliance, access control,
access audit, and privacy. The platform is the key enabler in embedding these policies
in all data products. Data products can define the policy configurations as code and
test and execute them during their life cycle. The platform offers the underlying
engine that implements the management of policies as code.

Take compliance as an example; all data products must protect PII yet enable ML
or analytical workloads that inherently require access to such information across
a population. For example, listeners data products must protect access to PII data
types such as name, age, address, etc., while enabling population analysis to detect
cohorts of listeners’ demographics across age or geographical locations. To enable
such a policy, data products can implement techniques such as differential privacy,
providing access to anonymized data that sustains the statistical characteristics of
the population while refraining access to an individual’s PII. The platform provides
the means for the listeners data product to codify the policy definition by simply
declaring what attributes are PII and who can run population analysis on them.
It’s the platform’s job to apply differential privacy techniques such as Randomized
Aggregatable Privacy-Preserving Ordinal Response (RAPPOR) to the underlying
data during data access.

Here are a few other examples of policies that the platform can help computationally
configure and execute as code:

Data privacy and protection
Strategies to prevent data from being stolen, lost, or accidentally deleted. Ensure
that sensitive data is accessible only to approved parties.

Data localization
Requirements around geolocation of data storage and its processing.

Data access control and audit
Control who can access what elements of the data and keep track of all accesses.

Data consent
Track and control what information the data owners allow to be preserved and
shared.

Data sovereignty
Preserving the ownership of data and its control.

Data retention
Managing the availability and storage of data according to the defined retention
duration and policy.
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3 Robert S. Seiner (2014). Non-Invasive Data Governance. Basking Ridge, NJ: Technics Publications.

Automated Tests
Another way that the platform supports data governance computationally is to run
automated tests. Automated testing makes sure that the data product complies with
its guarantees in terms of data quality and integrity. The platform sets up and runs
CI/CD pipelines that data product developers utilize to add testing to their data prod‐
ucts code. Automated tests intend to provide rapid feedback loops to the developers
to detect and address errors as early and cheaply as possible.

Automated Monitoring
Maintaining policies demands a continuous monitoring system that observes the
state of the mesh and its data products at runtime. The mesh monitoring system can
detect whether data products are complying with global policies or drifting. Runtime
monitoring verifies whether data products are moving toward or away from the
intended objectives. They get configured with a tolerance threshold and armed with
alarms and notification systems.

For example, the governance team can configure the monitoring system with an SLO
compliance function. These functions automatically scan the mesh and poll data from
the products’ SLO metrics APIs. Failure to respond to the required version of the SLO
APIs is the first signal in detecting lack of compliance, leading to a range of actions
from notification of the teams to degrading the data products’ trustworthiness.

Transition to Federated Computational Governance
So far, I have introduced a framework for operating and implementing federated
computational governance. This section summarizes the key shifts that transform
your organization to this model, particularly if you are operating a centralized gover‐
nance model.

Delegate Accountability to Domains
If your organization has adopted data governance, likely influenced by the work of
original thinkers such as Seiner,3 it is centralized. Governance of data mesh calls for
a federated team (“Federated Team” on page 77) of domain product owners, subject
matter experts, and central facilitators. Moving from a central custodianship of the
data to a federated model of data product ownership requires establishing a new
accountability structure led by the domains. This can be achieved by moving some of
the existing data stewards into the business-tech-aligned teams with the new role of a
data product owner.
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Embed Policy Execution in Each Data Product
A data governance team today is not only responsible for defining the policies and
introduction of regulatory requirements but also heavily involved in their execution
and assurance. Their supervision and control are injected into the value stream of
delivering quality and trustworthy data.

In contrast, data mesh’s global governance is accountable for defining and designing
the policies and standards. The execution of these policies is left to the platform. The
responsibility of application of the policies is given to the domains and built into and
embedded in each data product.

The global data governance function is no longer required to be injected into the
data creation or access value stream with the manual steps of checking and qualifying
data.

For example, the governance function is accountable to define what constitutes
data quality and how each data product communicates that in a standard way. It’s
no longer accountable for the quality of each data product. The platform team is
accountable to build capabilities to validate the quality of the data and communicate
its quality metrics, and each domain (data product owner) is accountable to adhere to
the quality standards and provide quality data products.

Similarly, the global governance function is not accountable for securing the data.
However, it is responsible to define what data security entails, such as the data sensi‐
tivity levels that each data product must support. The platform builds in capabilities
that describe and enforce sensitivity levels, and each domain data product owner is
accountable for making their data products securely utilize the platform, according to
the governance definition.

Automate Enablement and Monitoring over Interventions
The data technology landscape today is filled with incredibly sophisticated data gov‐
ernance tools. These tools are developed to facilitate the workflow of data governance
teams and apply the governance policies after the fact—after the data is generated and
collected into a lake or a landing zone. Such tools allow the data governance function
to intervene in the data sharing value stream after the data has been provided and try
to retrospectively qualify and fix problems.

Data mesh governance shifts these controls left to the source domain of the data. It
favors enabling doing the right thing early, through seamless automation, over meth‐
ods of intervening. This changes the nature of the tools from policing to enabling,
from fixing problems late to detecting and recovering the issues as early as possible.

This naturally leads to a different approach to the management of errors and risk.
The role of the platform and the accountability structure leads to the detection of
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errors as close as possible to the source. Global governance turns its focus to defining
the recovery mechanisms for the platform to put in place in case of an error.

Model the Gaps
Data governance teams today spend a large amount of their time creating the one
true canonical model of the centralized body of enterprise data. While the model
is composed of smaller models, nevertheless they have a key role in defining the
centralized model—whether placed in a warehouse or lake. In contrast, data mesh
leaves the modeling of data to the domains, the people closest to the data. However,
in order to get interoperability and linkage between data across domains, there are
data entities in each domain that need to be modeled in a consistent fashion across
all domains. Such entities are called polysemes. Standardizing how polysemes are
modeled, identified, and mapped across domains is a global governance function.

Measure the Network Effect
Data governance today has a tremendous responsibility to centrally support
enterprise-level data. This responsibility has led to measuring the success of the
governance function by the volume of data that has gone through the qualification
process. I have been in too many conversations where the number of petabytes or
thousands of data tables have been mentioned as a sign of pride and success. While
it’s understandable what has led to such metrics, there is no direct and reliable link
from the volume to the value.

Data mesh introduces a new way for the governance team to demonstrate success,
based on the usage of data. The stronger the interoperability of the mesh and the trust
in the data, the larger the number of interconnections between the nodes—consumer
and providers—on the mesh. Governance success is measured based on the network
effect of the mesh and the number of these interconnections.

Embrace Change over Constancy
Today’s governance practices such as defining the enterprise-wise canonical data
model or access control policies stem from the need to reduce change and disruption
to downstream data users. While practices to reduce change and impose constancy
might be feasible at a smaller scale, as the scope of enterprise data grows to many
domains and many use cases, it very quickly becomes an impossible mission.

Data mesh governance practices must embrace constant change: change from the
continuous arrival of fresh data, change of data models, rapid change in use cases
and users of the data, new data products being created, and old data products being
retired.
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Recap
Some of the common questions about the feasibility of data mesh revolve around
governance concerns, now in a decentralized manner. How can we make sure
individual data products comply with a set of common policies that make them
secure, compliant, interoperable, and trustworthy? Particularly, how can we have any
guarantees when each domain owns and controls its own data products and there
is no longer a central team getting its arms around the data? What happens to the
centralized governance team?

The answer to these questions lies within the data mesh governance model, called
federated computational governance. Data mesh, like its predecessors the lake and
warehouse, meets a similar set of governance objectives. But it differs in its operating
model and how these objectives are met.

The data mesh governance model consists of three complementary pillars. First
and foremost, it requires systems thinking, looking at the mesh as an ecosystem of
interconnected data product and platform systems, and their independent and yet
connected teams. Then try to find the leverage points and feedback loops to control
the behavior of the mesh as a whole toward its objective, creating value through
sharing data products at scale.

Second, apply a federated operating model. From the social and organizational per‐
spective, create a federated team of individual domains and platform representatives.
Create incentives that are aligned with both domains’ data product success as well as
the success of the wider ecosystem. Let domains have autonomy and responsibility
for the majority of policies that are in the sphere of their influence and control, while
leaving cross-functional and a small set of policies to be defined globally.

Finally, from a practical and implementation perspective, data mesh governance
heavily relies on embedding the governance policies into each data product in an
automated and computational fashion. This of course heavily relies on the elements
of the underlying data platform, to make it really easy to do the right thing.

To bring these three pillars together, Figure 5-5 shows an example of this model.
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Figure 5-5. Example of data mesh governance operating model

Data mesh governance seeks to improve the existing approach to data gover‐
nance at the intersection of a decentralized value system meeting automation and
computation.

Data mesh governance is the method by which we define and apply what is right
and how to do the right thing in an ecosystem of data product teams. The definition
of what is right and how to do the right thing has occupied the great minds for centu‐
ries, from Aristotle in Ancient Greece to the German Idealism era to modern political
systems. As human beings we have wrestled with the definition and regulation of
what is right somewhere in between common good and utilitarianism—approaches
that achieve maximum benefit and happiness of the community—and individualism,
which is prioritizing an individual’s happiness and liberty and doing what is right for
them.

While data mesh is not a field of philosophy, it wrestles with a similar dilemma: how
to do the right thing while maintaining the autonomy, freedom, and individualism
of different domains and also achieving the greater good through consistency and
standardization across all data products. It defines an approach to data governance
that attempts to continuously find the dynamic equilibrium between localization of
decisions so that the domains can go fast versus globalization and centralizations of
decisions for everyone to go far.
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I do think catalysts such as computational governance and dual-system incentive
structures can lead to domain behaviors that ultimately result in the greater good
of the mesh ecosystem. However, the mesh will not reach an optimal state unless
the majority of domains become intelligently augmented—with embedded ML-based
systems in each of their products and systems. The continuous need for trustworthy
and useful data across multiple domains to train ML-based solutions will be the
ultimate motivator for the adoption of data mesh governance and doing the right
thing.
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PART II

Why Data Mesh?

By doubting we are led to question, by questioning we arrive at the truth.
—Pierre Abélard

Organizational transformation is difficult, costly, and takes time. Data mesh transfor‐
mation is no exception. The story of Daff, Inc. (Prologue: Imagine Data Mesh), and
the description of data mesh principles in Part I demonstrate the substantial impact
of data mesh on data culture, architecture, and technology and how this affects how
an organization values, shares, and uses analytical data at scale.

So why should any organization make this shift, and why now? I will answer these
questions in Part II of the book.

In Chapter 6, “The Inflection Point”, I will look at the macro drivers, the current real‐
ities that have pushed us to a tipping point, where our past evolutionary approaches
no longer serve us. In Chapter 7, “After the Inflection Point”, I introduce the core
outcomes of data mesh and how it achieves them. And in the last chapter of Part
II, Chapter 8, “Before the Inflection Point”, I briefly review the history of analytical
data management architecture and why what got us here will no longer take us to the
future.





1 Andrew S. Grove, Only the Paranoid Survive, (New York: Currency, 1999).

CHAPTER 6

The Inflection Point

A strategic inflection point is a time in the life of a business when its fundamentals are about
to change. That change can mean an opportunity to rise to new heights. But it may just as
likely signal the beginning of the end.1

—Andrew S. Grove

Data mesh is what comes after an inflection point, shifting our approach, attitude,
and technology toward data. Mathematically, an inflection point is a magic moment
at which a curve stops bending one way and starts curving in the other direction. It’s a
point that the old picture dissolves, giving way to a new one.

This won’t be the first or the last inflection point in the evolution of data manage‐
ment. However, it is the one that is most relevant now. There are drivers and empiri‐
cal signals that point us in a new direction. I personally found myself at this turning
point in 2018, when many companies were seeking a new data architecture that could
respond to the scale, complexity, and data aspirations of their business. After reading
this chapter, I hope you also arrive at this critical point, where you feel the urge for
change, to wash away some of the fundamental assumptions made about data and
imagine something new.

Figure 6-1 is a simplistic demonstration of the inflection point in question. The x-axis
represents the trend of macro drivers that have pushed us to this inflection point.
The drivers include ever-increasing business complexity combined with uncertainty,
diversity of data expectations and use cases, and the proliferation of data available
from ubiquitous sources. On the y-axis we see the impact of these drivers. The
impacts affect business agility, the ability to get value from data, and resilience to
change. In the center is the inflection point, where we have a choice to make: to
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continue with our existing approach and, at best, reach a plateau of impact or take the
data mesh approach with the promise of reaching new heights.

Figure 6-1. The inflection point in the approach to analytical data management

In this chapter, I share today’s data landscape realities that act as the main drivers for
data mesh.

Great Expectations of Data
One of the perks of being a technology consultant is traveling through many
industries and companies and getting to know their deepest hopes and challenges.
Through this journey, one thing is evident: building a data-oriented business remains
one of the top strategic goals of executives. Data is front and center in creating
intelligent services and products, and it backs real-time business decisions.

Here are a few examples, all truly inspiring:

Our mission at Intuit is to power prosperity around the world as an AI-driven expert
platform company, by addressing the most pressing financial challenges facing our
consumer, small business and self-employed customers.

—Financial SaaS company
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2 Christoph Windheuser, “What Is Intelligent Empowerment?”. Thoughtworks, March 23, 2018.

Our mission is to improve every single member’s experience at every single touchpoint
with our organization through data and AI.

—Healthcare provider and payer company

By People, For People: We incorporate human oversight into AI. With people at the
core, AI can enhance the workforce, expand capability and benefit society as a whole.

—Telco

No matter the industry or the company, it’s loud and clear that we want to become
intelligently empowered2 to:

• Provide the best customer experience based on data and personalization.•
• Reduce operational costs and time through data-driven optimizations.•
• Empower employees to make better decisions with trend analysis and business•

intelligence.

All of these scenarios require data—a high volume of diverse, up-to-date, and truthful
data that can, in turn, fuel the underlying analytics and machine learning models.

A decade ago, many companies’ data aspirations were mainly limited to business
intelligence (BI). They wanted the ability to generate reports and dashboards to man‐
age operational risk, respond to compliance, and ultimately make business decisions
based on the facts, on a slower cadence. In addition to BI, classical statistical learning
has been used in pockets of business operations in industries such as insurance,
healthcare, and finance. These early use cases, delivered by highly specialized teams,
have been the most influential drivers for many past data management approaches.

Today, data aspirations have evolved beyond BI to every aspect of an organization,
for example using machine learning in the design of products, such as automated
assistants; in the design of services and the customer experience, such as personalized
healthcare; and streamlining operations such as optimized real-time logistics. Not
only that, but the expectation is to democratize data so that the majority of the
workforce can put data into action.

Meeting these expectations requires a new approach to data management—an
approach that can seamlessly fulfill the diversity of uses for data. Diversity of data
usage demands diversity of modes of access to data, ranging from simple struc‐
tured views of data for reporting to continuously reshaping semi-structured data
for machine learning training, or from real-time and fine-grained access to events
to batch aggregations. We need to meet these expectations with an approach and
architecture that natively supports diverse use cases without requiring copying data
from one technology stack to another across the organization.
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3 Chapter 1 introduces the two types of data.

More importantly, the widespread use of machine learning requires a new attitude
toward application development and data. The approach shifts from deterministic
and rule-based application development—where given a specific input data, the out‐
put can be determined—to nondeterministic and probabilistic data-driven applica‐
tions, where given specific input data, the output could be a range of possibilities that
can change over time. This approach to application development requires continuous
refining of machine learning models over time and continuous, frictionless access to
the latest data.

The great and diverse expectations of data require us to step back and wonder if there
is a simpler approach to data management that can universally address the diversity
of needs today and beyond.

The Great Divide of Data
Many of the technical complexities organizations face today stem from how we have
divided data—operational and analytical data:3 how we have siloed the teams that
manage them, how we have proliferated the technology stacks that support them, and
how we have integrated them.

Today, operational data is collected and then transformed into analytical data. Ana‐
lytical data trains the machine learning models that then make their way into the
operational systems as intelligent services (Figure 6-2).

Over time, the analytical data plane itself has diverged into two
generations of architecture and technology stacks. Initially there
was a data warehouse, and this was followed by a data lake, with
data lakes supporting data science access patterns and preserving
data in its original form, and data warehouses supporting analyti‐
cal and BI reporting access patterns with data conforming to a
centrally unified ontology. In recent years, the two technology
stacks have begun to converge, with data warehouses attempting
to onboard data science workflows and data lakes attempting to
serve data analysts and BI, in an architecture called lakehouse.
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Figure 6-2. The two planes of data

The current state of data technology, architecture, and organization design is reflec‐
tive of the divergence of the analytical and operational data planes—two levels of
existence, integrated yet separate. Each plane operates under a different organiza‐
tional vertical. BI, data analytics, and data science teams, under the leadership of
a chief data and analytics officer (CDAO), manage the analytical data plane, while
business units and their collaborating technology team manage the operational data.
From a technology perspective, two fragmented technology stacks have grown to
each serve a plane. There is limited overlap between the two stacks.

This divergence has led to the two-plane data topology and a fragile integration archi‐
tecture between the two. The operational data plane feeds the analytical data plane
through a set of scripts or automated processes often referred to as ETL jobs—extract,
transform, and load. Often operational databases have no explicitly defined contracts
with the ETL pipelines for sharing their data. This leads to fragile ETL jobs where
unanticipated upstream changes lead to downstream pipeline failures. Over time the
ETL pipelines grow in complexity, trying to provide various transformations over the
operational data, flowing data from the operational data plane to the analytical plane
and back to the operational plane (Figure 6-3).

The challenges of two-plane data management, including the brittle integration
architecture of the pipelines and a centralized data warehouse or lake to access data,
are one of the major drivers to imagine a future solution.

The Great Divide of Data | 99



4 Google pioneered MapReduce in the early 2000s.
5 While David Luckham at Stanford was one of the early pioneers of event processing, the open source

technologies for high volume and velocity event and stream processing only became available in early 2010s
with the likes of Apache Kafka.

6 Perhaps the most impactful work on storage for storing a variety of data types has been object storage and its
first cloud-based implementation by AWS S3 in the mid-2000s.

Figure 6-3. Pipeline-based integration of the two data planes

Scale: Encounter of a New Kind
Since the mid-2000s, the data industry has evolved its technology solutions to deal
with the scale of data in terms of volume, velocity, and variety. The early generations
of large-scale parallel data processing4 addressed the large volume of data that web
applications and touchpoints generated. Stream processing backbones5 have been
created to handle the high speed of data that started flowing from mobile devices.
Since then, general and purpose-built storage systems have been created to manage a
variety of data formats6—text, imaging, voice, graphs, files, time series, etc.

Today, we are encountering a new kind of scale, the origins and location of the
data. Data-driven solutions often require access to data beyond a business domain,
organizational, or technical boundary. The data can be originated from every system
that runs the business, from every touchpoint with customers, and from other organ‐
izations. The next approach to data management needs to recognize the proliferation
of the origins of data and their ubiquitous nature.

The most interesting and unexpected insights emerge when we connect data from a
variety of sources. For example, the future of intelligent healthcare requires a longitu‐
dinal human record of a patient’s diagnostics, pharmaceutical records, personal hab‐
its, and lab results in conjunction with all other patient longitudinal records. These
sources are beyond a single organization’s control. Another example involves the
future of intelligent banking, which requires data beyond the financial transactions
that customers perform with their banks. They’ll need to know customers’ housing
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7 Donald Knuth made the statement “(code) premature optimization is the root of all evil.”

needs, the housing market, their shopping habits, and their dreams and needs to offer
them the services they need when they need them.

This unprecedented scale of the diversity of sources requires a shift in data manage‐
ment—a shift away from collecting data from sources in one big, centralized place to
connecting data, wherever it is.

Beyond Order
I’m writing this book during the pandemic of 2020–2021. If there was any doubt that
organizations need to navigate complexity, uncertainty, and volatility, the pandemic
has made that abundantly clear. Even on a good day, in the absence of the pandemic,
organizations must see volatility and change as a default state of existence.

The complexity that rises from the ever-changing landscape of business is reflected
in data. Rapid delivery of new features to products, new and changed offerings,
new touchpoints, new partnerships, new acquisitions, etc., all result in a continuous
reshaping of data.

More than ever now, organizations need to have the pulse of their data and the ability
to act quickly and respond to change with agility.

What does this mean for data management? It requires access to high quality and
trustworthy facts of the business at the time they happen. Data platforms must close
the distance—time and space—between when an event happens and when it gets
analyzed. Analytics solutions must guide real-time decision making. Rapid response to
change is no longer a premature optimization7 of business: it’s a baseline feature.

Data management of the future must build in embracing change, by default. Rigid
data modeling and querying languages that expect to put the system in a straitjacket
of a never-changing schema can only result in a fragile and unusable analytics system.

Data management of the future must embrace the complex nature of today’s organi‐
zations and allow for autonomy of teams with peer-to-peer data collaborations.

Today, the complexity has stretched beyond the surface of the business to its physical
platforms. In many organizations, data platforms span multiple clouds and on-prem
providers. The data management of the future must support managing and accessing
data across multiple hosting platforms, by default.
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8 NewVantage Partners LLC, Big Data and AI Executive Survey 2021: Executive Summary of Findings, (2021).

Approaching the Plateau of Return
In addition to the seismic shifts listed earlier, there are other telling signs: the discord
between data and AI investments and their returns. To get a glimpse of this, I suggest
you browse the NewVantage Partners annual reports,8 an annual survey of senior cor‐
porate C-level executives on the topics of data and AI adoption. What you find is the
recurring theme of an increasing effort and investment in building the enabling data
and analytics platforms. While the majority of companies report successful outcomes
from their investments, they are finding the transformational results middling.

For example, in their 2021 report, only 24.4% of firms reported having forged a data
culture. Only 24.0% of firms reported that they have become data-driven, and only
41.2% of firms reported that they are competing using data and analytics. It’s too small
of result for the pace and amount of investment; 99% of surveyed companies are
investing in big data and AI, with 62% reporting investments exceeding $50M.

I recognize that organizations face a multifaceted challenge in transforming to
become data-driven, migrating from decades of legacy systems, resistance of a legacy
culture to using data, and competing business priorities.

The future approach to data management must look carefully at this phenomena, at
why the solutions of the past are not producing a comparable result to the human and
financial investment we are putting in today. Some of the root causes include lack of
skill sets needed to build and run data and AI solutions, organizational, technology,
and governance bottlenecks, and friction in discovering, trusting, accessing, and
using data.

Recap
Data mesh embraces the data realities of organizations today and their trajectory. It is
created as an acknowledgment of the limitations of today’s data solutions.

Figure 6-4 summarizes the realities of the inflection point moving toward data mesh.
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Figure 6-4. Macro drivers for the creation of data mesh

Data mesh assumes a new default starting state: proliferation of data origins within
and beyond organizations’ boundaries, on one or across multiple cloud platforms. It
assumes a diverse range of use cases for analytical data. It works with the grain of a
highly complex and volatile organizational environment, and not against it.

Next, we look at our expectations from data mesh as a post-inflection-point solution,
namely, what organizational impacts we expect to see and how data mesh achieves
them.
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CHAPTER 7

After the Inflection Point

The only way to make sense out of change is to plunge into it, move with it, and join the
dance.

—Alan Watts

Standing at an inflection point is a magical experience. It’s where we look at what
has come before, learn from it, and choose a new path. It’s a point where we have a
choice to turn to a new direction, with an eye on a different destination. This chapter
introduces the destination and the outcomes to expect when choosing data mesh at
your organization’s inflection point.

Data mesh assumes the environmental conditions I introduced in the previous chap‐
ter as a default state. By default, data mesh assumes the ubiquitous nature of data.
Data can be of any origin; it can come from any system within an organization, or
outside, and across boundaries of organizational trust. Any underlying platform can
serve it on one cloud hosting service or another. Data mesh assumes the diversity of
data use cases and their unique modes of access to data. The data use cases range
from historical data analysis and reporting to training machine learning models and
data-intensive applications. And lastly, data mesh assumes complexity of the business
landscape—continuous growth, change, and diversity—as a natural state of being.

Data mesh learns from the past solutions and addresses their shortcomings. It
reduces points of centralization that act as coordination bottlenecks. It finds a new way
of decomposing the data architecture without slowing the organization down with
synchronizations. It removes the gap between where the data originates and where
it gets used and removes the accidental complexities—aka pipelines—that happen in
between the two planes of data. Data mesh departs from data myths such as a single
source of truth, or one tightly controlled canonical data model.
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Ultimately, data mesh’s goal is to enable organizations to get value from data at scale,
using data to not only improve and optimize their business but also reshape it. Data
mesh outcomes can be summarized as (Figure 7-1):

• Respond gracefully to change: a business’s essential complexity, volatility, and•
uncertainty

• Sustain agility in the face of growth•
• Increase the ratio of value from data to the investment•

Figure 7-1. Data mesh outcomes for organizations

In this chapter, I describe each of these outcomes and how data mesh principles
accomplish them.

Respond Gracefully to Change in a Complex Business
Businesses are complex systems, composed of many domains that each have their
own accountability structure and goals; they each change at a different pace. The
behavior of the business as a whole is the result of an intricate network of relation‐
ships between its domains and functions and their interactions and dependencies.
The volatility and rapid change of the markets and regulations within which the
businesses operate compound their complexity.

How can businesses manage the impact of such complexity on their data? How
can organizations keep going through change while continuing to get value from
their data? How can businesses avoid the increased cost of managing the change of
their data landscape? How can they provide truthful and trustworthy data without
disruption, in the face of continuous change? This comes down to embracing change
in a complex organization.
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1 Chapter 2 elaborates on this. The information provided here is sufficient for understanding why this principle
is needed to manage complexity of data.

Let’s look at a few ways data mesh achieves embracing change despite the increased
complexity of the business.

Align Business, Tech, and Now Analytical Data
One way to manage complexity is to break it down into independently managed
parts. Businesses do so by creating domains. For example, Daff breaks down its busi‐
ness domains according to relatively independent outcomes and functions—manag‐
ing podcasts, managing artists, player applications, playlists, payments, marketing,
etc.

This allows each domain to move fast without tight synchronization dependencies on
other parts of the business.

Just as a business divides its work through business domains, technology can, and
should, align itself to these business divisions. Modern digital businesses orient
their technology staff around their business units, allowing each business unit to
be supported, enabled, and shaped by dedicated digital products and services, built
and maintained by a long-standing dedicated technology team. The recent movement
toward microservices is largely about performing this kind of decomposition. Busi‐
ness units control and manage their operational applications and data, supported by
their partnering technology team.

The first principle of data mesh carries out the same decomposition for analytical
data, resulting in the domain ownership of data.1 Each business unit takes on the
responsibility for analytic data ownership and management. This is because the
people closest to the data are best able to understand what analytical data exists and
how it should best be interpreted.

Domain ownership results in a distributed data architecture, where the data arti‐
facts—datasets, code, metadata, and data policies—are maintained by their corre‐
sponding domains.

Figure 7-2 shows the concept of business, technology, and data alignment applied
to Daff. Each domain has a business function and goal, enabled and shaped by a
set of technology solutions—applications and services—and empowered by data and
analytics. Domains have dependencies through explicitly defined data and service
contracts.
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Figure 7-2. Aligning business, tech, and data to manage complexity

Close the Gap Between Analytical and Operational Data
To make good decisions in the moment, analytical data must reflect business truth‐
fulness. It must be as close as possible to the facts and reality of the business at
the moment the decision is made. This is hard to achieve with two separate data
planes—analytical and operational—that are far from each other and connected
through fragile data pipelines and intermediary data teams. Data pipelines must
dissolve and give way to a new way of providing the analytical data and capabilities as
close to the source as possible.
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2 Chapter 3 elaborates upon this concept. For now, the introduction here is sufficient to understand the role of
data products in responding to the organizational complexity.

How can changes in the business, such as adding new features to a product, introduc‐
ing new services, or modifying a business process be reflected in near real time in the
analytical data?

Data mesh suggests closing the gap and feedback loop between the two planes,
through data shared as a product and oriented around the domains. Data mesh
connects the two planes under a new structure—a network of peer-to-peer connected
data products and applications, a mesh that exchanges analytical data.

The data mesh principle of data as a product introduces a new accountability for each
domain to share their analytical data as a product, with the goal of delighting the
experience of data users by streamlining their experience in discovering, understand‐
ing, trusting, and ultimately using quality data. The data as a product principle is
designed to address data quality and the age-old siloed data problem and unhappy
data users.2

Figure 7-3 shows data mesh’s approach to integrating operational and analytical
planes with tighter and faster feedback loops. The concept of centralized pipelines
across the two planes is eliminated. Here, the planes are divided by business domains.
The integration between data products, the analytical data plane, and their corre‐
sponding domain’s operational plane services are rather simple and unintelligent and
a matter of simple movement of data. Data products will embed and abstract the
intelligence and code required to transform the operational data into its analytical
form.

By embedding machine intelligent decisions and actions into modern systems
through embedding analytics in digital experiences, the boundaries between the
analytical and operational planes are dissolving. Data mesh continues to respect the
fundamental technical differences between operational data and analytical data, while
it closes the gap and tightly integrates the two as demonstrated in this section.
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Figure 7-3. Closing the gap between operational and analytical data

Localize Data Changes to Business Domains
Data mesh allows for data models to change continuously without fatal impact to
downstream data users or slowing down access to data. It does so by removing the
shared global canonical data model and hence removing the need for synchronizing
changes. Data mesh localizes change to domains and gives them autonomy to model
their data based on their most intimate understanding of the business without the
need for central coordination of a single shared canonical model.

Data mesh imposes well-defined and guaranteed data contracts to share domain data.
Domain data contracts support older revisions until they gracefully migrate their
data users to the new revision. This liberates domains to change their data models
continuously.
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Reduce Accidental Complexity of Pipelines and Copying Data
As Fred Brooks laid out in his widely popular paper, “No Silver Bullet—Essence and
Accident in Software Engineering”, there are two types of complexity when building
software systems. First, we have the essential complexity that is essential and inherent
to the problem space. This is business and domain complexity. Second, there is
accidental complexity: the complexity that we—engineers, architects, and designers—
create in our solutions. Accidental complexity can and should be reduced.

The world of analytical solutions is full of opportunities to remove accidental com‐
plexities. Let’s talk about a few of the accidental complexities that data mesh reduces.

Today, we keep copying data around because we need the data for yet another mode
of access, or yet another model of computation. We copy data from operational
systems to a landing zone and then to the data lake and after that to feature stores
for data scientists. We copy the data again from the lake into lakeshore marts for data
analyst access and then into the downstream dashboard or reporting databases for
the last mile. We build complex and brittle pipelines to do the copying. The copying
journey continues from one technology stack to another and from one cloud vendor
to another. Today, to run analytical workloads you need to decide up front which
cloud provider copies all of your data in its lake or warehouse before you can get
value from it.

Data mesh addresses this problem by creating a new architectural unit that encapsu‐
lates a domain-oriented data semantic while also providing multiple modes of access
to the data suitable for different use cases and users. This architectural unit is called
the data product quantum (data quantum for short). A data quantum has an explicit
set of contracts and guarantees for each of its native access modes—SQL, files, events,
etc. It can be accessed anywhere across the internet, in case it chooses to provide
data to external data users. It provides access control and policy enforcement on each
of its interfaces at the time of access. A data quantum encapsulates the code that
transforms and maintains its data. Data pipelines break down and become internal
implementations of data quantum logic. A data quantum shares data without the
need for intermediary pipelines. Removing complex, brittle, and labyrinth pipelines
reduces the opportunity for failure in case of an upstream data change.

Sustain Agility in the Face of Growth
Today, the success of businesses is predicated on their multifaceted growth—new
acquisitions, new service lines, new products, geolocation expansions, and so on. All
this leads to new sources of data to manage and new data-driven use cases to build.
Many organizations slow down or plateau in the speed of delivering value from their
data, onboarding new data, or serving the use cases as they grow.
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Data mesh’s approach to sustaining agility in the face of growth can be summarized
in a few techniques that aim to reduce organization-wide bottlenecks, coordination,
and synchronization. Agility relies on business domains’ ability to achieve outcomes
autonomously with minimal dependencies.

Remove Centralized and Monolithic Bottlenecks
A centralized data team managing a monolithic data lake or warehouse limits agility,
particularly as the number of sources to onboard or number of use cases to serve
grow. Data mesh looks carefully for centralized bottlenecks, particularly where they
are the focal point of a multiparty synchronization, from both the architecture and
human communication perspective. Architecturally, these bottlenecks include data
lakes and data warehouses.

Data mesh proposes an alternative, a peer-to-peer approach in data collaboration
when serving and consuming data. The architecture enables consumers to directly
discover and use data from the source data products. For example, an ML training
function or a report can directly access independent data products, without the
intervention of a centralized architectural component such as a lake or warehouse
and without the need for an intermediary data (pipeline) team.

Figure 7-4 demonstrates the conceptual shift. Each data product provides versioned
interfaces that allow peer-to-peer consumption of data. The data from multiple data
products can be composed and aggregated into new higher-order data products.

Figure 7-4. Data mesh removes centralized architecture bottlenecks

Reduce Coordination of Data Pipelines
In recent decades, technologies that have exceeded their operational scale have
one thing in common: they have minimized coordination and synchronization. Asyn‐
chronous I/O has scaled the throughput of networked applications over blocking
I/O. Reactive applications have resulted in faster parallel processing of messages.
MapReduce functional programming has distributed large-volume data processing
across many servers. Choreographed event-driven microservices have scaled business
workflows.
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3 Data with similar statistical and structural properties as the real data, without exposing the private informa‐
tion found in real data.

Despite the relentless effort to remove coordination and synchronization in core
technologies, we have, for the most part, neglected organizational and architectural
coordination. As a result, no matter how fast our computer systems run, achieving
outcomes have fallen behind coordinating activities of teams and humans.

Data mesh reduces architectural and human coordination.

Existing architectures build on the technical decomposition of components—i.e.,
pipeline tasks such as ingestion, processing, serving, etc. This style of architectural
decomposition results in heavy coordination between these functions each time a
new data source or a new use case is delivered. Data mesh moves away from tech‐
nical partitioning of data management to domain-oriented partitioning. Domain-
oriented data products develop and evolve independently of other data products.
This domain-oriented decomposition reduces the need for coordination to achieve
an outcome. For the most part, the domain-oriented data product team can take
care of the new data sources for their new use cases. In cases where a new use case
requires access to a new data product outside of the domain, the consumer can make
progress by utilizing the standard contracts of the new data product, mocks, stubs, or
synthetic data3 interfaces, until the data product becomes available. This is the beauty
of contracts, as they ease the coordination between consumer and provider during
development. Figure 7-5 shows the shift in reducing pipeline coordination.

Figure 7-5. Reduce architectural coordination of pipelines

Reduce Coordination of Data Governance
Another major coordination bottleneck is the central function of data governance.
Today, data governance coordination is necessary to permit access to data, approve
the quality of data, and validate the conformance of data changes with the organiza‐
tion’s policies. The central and heavily manual processes of data governance inhibit
agility in data sharing.
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4 Chapter 5 discusses this further. For now, it’s sufficient to know what impact this principle has on organiza‐
tional agility.

Data mesh reduces governance coordination friction through two functions:

• Automating and embedding policies as code in each data product•
• Delegating central responsibilities of governance to individual domain data prod‐•

uct owners

These changes are implemented by data mesh’s federated and computational data
governance model.4

Operationally, the governance team is composed of the individual domain data prod‐
uct owners—the long-term product owners responsible for domain data sharing.
Architecturally, the governance function embeds policy execution into every data
product in a computational and automated fashion. This vastly improves the function
of governance today, which is one of the main synchronization points for discovering
data, approving data, and making sure it follows the necessary policies.

As you can imagine, the autonomy of the domains can have undesirable conse‐
quences if not checked: isolation of domains, incompatibility and disconnection of
one domain’s data product from others, and a fragmented experience when consum‐
ing multiple domains’ data. Data mesh governance heavily relies on the automation
of governance concerns for a consistent, connected, and trustworthy experience using
the domains’ data products.

Figure 7-6 shows the replacement of manual and central governance functions with
automated delivery of data products with policies embedded as code.

Figure 7-6. Reduce synchronization of data governance
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5 Chapter 4 further expands on the function and form of the data mesh infrastructure. For now, it’s sufficient to
know its impact on organizational agility.

Enable Autonomy
The correlation between team autonomy and team performance has been the subject
of team management studies. Empirical studies show that teams’ freedom in decision
making to fulfill their mission can lead to better team performance. On the other
hand, too much autonomy can result in inconsistencies, duplicated efforts, and team
isolation.

Data mesh attempts to strike a balance between team autonomy and interteam
interoperability and collaboration. It gives domain teams autonomy to take control
of their local decision making, for example, choosing the best data model for their
data products, while it uses computational governance policies to impose a consistent
experience across all data products, for example, standardizing the data modeling
language that all domains utilize. Data mesh gives domain teams autonomy to build
and maintain their data products, while it places a domain-agnostic data platform in
place for teams to do so in a consistent and cost-effective way.

The principle of a self-serve data platform essentially makes it feasible for domain
teams to manage the life cycle of their data products with autonomy and utilize the
skillsets of their generalist developer to do so.5 The self-serve data infrastructure
allows data product developers to build, deploy, monitor, and maintain their data
products. It allows data consumers to discover, learn, access, and use the data prod‐
ucts. The self-serve infrastructure makes it possible for the mesh of data products to
be joined, correlated, and used as a whole, while maintaining the independence of the
domain teams.

Increase the Ratio of Value from Data to Investment
Industry reports, such as the NewVantage Partners report I shared in the previous
chapter, and my personal experience, point to the fact that we are getting little value
from data compared to our investments in data management. If we compare the
value we get from our data teams and data solutions, compared to other technical
investments such as app development infrastructure, it’s evident that we are facing
headwinds when it comes to data.

Data mesh looks at ways to improve the ratio of value over effort in analytical data
management: the creation of a new archetype of data platform that abstracts today’s
technical complexity through open data interfaces that enable sharing data across
organizational trust boundaries or physical locations and through applying product
thinking to remove friction from the experience of data users.
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6 Chapter 11 lists the open interfaces shared across data products.

Abstract Technical Complexity with a Data Platform
Today’s landscape of data management technology is undoubtedly too complex. The
litmus test for technical complexity is the ever-growing need for data engineers and
data experts. We don’t seem to ever have enough of them. Another litmus test is the
low value to effort ratio of data pipeline projects. Much effort is spent with little value
returned—i.e., getting frictionless access to quality datasets.

Data mesh looks critically at the existing technology landscape and reimagines the
technology solutions as a data-product-developer (or user)-centric platform. It intends
to remove the need for data specialists and enable generalist experts to develop data
products.

Additionally, data mesh defines a set of open and standard interfaces for different
affordances that all data products share—discovering, requesting access, querying,
serving data, securing data, etc.—to enable a more collaborative ecosystem of tech‐
nologies. This is to reduce the cost of integration across vendors.6

Embed Product Thinking Everywhere
Data mesh introduces a few shifts to get us laser focused on value, as perceived by the
data users. It shifts our thinking from data as an asset to data as a product. It shifts
how we measure success from data volume to data user happiness.

Data is not the only component of a data mesh ecosystem that is treated as a product.
The self-serve data platform itself is also a product. In this case, it serves the data
product developers and data product users. Data mesh shifts the measure of success
of the platform from the number of capabilities to the impact of its capabilities on
improving the experience of data product development and reducing the lead time to
deliver, or discover and use, a data product.

Product thinking leads to reduced effort and cost, hidden in the everyday experience
of data product users and developers.

Go Beyond the Boundaries
Improvement to a business function almost always requires insights beyond the
unit’s boundary. It needs data from many different business domains. Similarly, the
data-driven value that an organization generates in serving its customers, employees,
and partners requires data beyond what it generates and controls.

Consider Daff. In order to provide a better experience to the listeners with auto-play
music, it not only requires data from listeners’ playlists, but also their network of
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friends and their social and environmental influences and behaviors. It requires data
from many corners of Daff and beyond—including news, weather, social platforms,
etc.

Multidomain and multiorg access to data is an assumption built into data mesh.
Data mesh’s data quantum concept can provide access to data no matter where the
data physically resides. A data quantum provides a set of interfaces that essentially
allow anyone with the proper access control to discover and use the data product
independent of its physical location. The identification schema, access control, and
other policy enforcement assumes using open protocols that are enabled over the
internet.

Data mesh architecture delivers more value by connecting data beyond organiza‐
tional boundaries.

Recap
After reading this chapter you might assume that data mesh is a silver bullet. Quite
the contrary. Data mesh is an important piece of the solution. It enables us to truly
democratize access to data. However, to close the loop of deriving value from data,
there is much more to be done beyond sharing data. We need to continuously
deliver repeatable and production-quality analytical and ML-based solutions. But, to
bootstrap, we need data sharing at scale, and that is what data mesh focuses on.

The data mesh goals listed in this chapter invite us to reimagine data, specifically how
to design solutions to manage it, how to govern it, and how to structure our teams.
In this chapter, I linked data mesh goals to their enablers. That was a lot to cover, so
allow me to summarize it in Table 7-1.

Table 7-1. Summary of after the inflection point with data mesh

Data mesh goal What to do How to do it
Manage changes to data
gracefully in a complex,
volatile, and uncertain
business environment

Align business, tech,
and data

Create cross-functional business, tech, and data teams each
responsible for long-term ownership of their data
Principle of domain data ownership

Close the gap
between the
operational and
analytical data planes

Remove organization-wide pipelines and the two-plane data
architecture
Integrate applications and data products more closely through dumb
pipes
Principle of data as a product

Localize data changes
to business domains

Localize maintenance and ownership of data products in their specific
domains
Create clear contracts between domain-oriented data products to
reduce impact of change
Principle of data as a product
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Data mesh goal What to do How to do it
Manage changes to data
gracefully in a complex,
volatile, and uncertain
business environment
(continued)

Reduce the accidental
complexity of
pipelines and copying
of data

Breakdown pipelines, move the necessary transformation logic into
the corresponding data products, and abstract them as an internal
implementation
Principle of data as a product
Data product quantum architectural component

Sustain agility in the face of
growth

Remove centralized
architectural
bottlenecks

Remove centralized data warehouses and data lakes
Enable peer-to-peer data sharing of data products through their data
interfaces
Principle of domain ownership
Principle of data as a product

Reduce the
coordination of data
pipelines

Move from a top-level functional decomposition of pipeline
architecture to a domain-oriented decomposition of architecture
Introduce explicit data contracts between domain-oriented data
products.
Principle of domain ownership
Principle of data as a product

Reduce coordination
of data governance

Delegate governance responsibilities to autonomous domains and
their data product owners
Automate governance policies as code embedded and verified by each
data product quantum
Principle of federated computational governance

Enable team
autonomy

Give domain teams autonomy in moving fast independently.
Balance team autonomy with computational standards to create
interoperability and a globally consistent experience of the mesh.
Provide domain-agnostic infrastructure capabilities in a self-serve
manner to give domain teams autonomy.
Principle of federated computational governance
Principle of the self-serve data platform

Increase value from data
over cost

Abstract complexity
with a data platform

Create a data-developer-centric and a data-user-centric infrastructure
to remove friction and hidden costs in data development and use
journeys
Define open and standard interfaces for data products to reduce
vendor integration complexity
Principle of data as a product
Principle of the self-serve data platform

Embed product
thinking everywhere

Focus and measure success based on data user and developer
happiness
Treat both data and the data platform as a product
Principle of the self-serve data platform
Principle of data as a product

Go beyond the
boundaries of an
organization

Share data across physical and logical boundaries of platforms and
organizations with standard and internet-based data sharing contracts
across data products
Principle of data as a product
Principle of the self-serve data platform
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In the next chapter, I will give an overview of what has happened before the inflection
point: why the data management approach that got us here won’t take us to the
future.
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CHAPTER 8

Before the Inflection Point

Today’s problems come from yesterday’s “solutions.”
—Peter M. Senge, The Fifth Discipline

Organizational complexity, proliferation of data sources, growth in data expectations:
these are the forces that have put stress on our existing approaches to analytical
data management. Our existing methods have made remarkable progress scaling
the machines: managing large volumes of a variety of data types with planet-scale
distributed data storage, reliably transmitting high-velocity data through streams, and
processing data-intensive workloads concurrently and fast. However, our methods
have limitations with regard to organizational complexity and scale, the human scale.

In this chapter, I briefly introduce the current landscape of data architectures, their
underlying characteristics, and the reasons why, moving into the future, they limit us.

Evolution of Analytical Data Architectures
How we manage analytical data has gone through evolutionary changes, changes
driven by new consumption models, ranging from traditional analytics in support of
business decisions to intelligent products augmented with ML. While we have seen
an accelerated growth in the number of analytical data technologies, the high-level
architecture has seen very few changes. Let’s browse the high-level analytical data
architectures, followed by a review of their unchanged characteristics.
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The underlying technologies supporting each of the following
architectural paradigms have gone through many iterations and
improvements. The focus here is the architectural pattern, not the
technology and implementation.

First Generation: Data Warehouse Architecture
Data warehousing architecture today is influenced by early concepts such as facts
and dimensions formulated in the 1960s. The architecture intends to move data from
operational systems to business intelligence (BI) systems. BI systems have tradition‐
ally served management with operational planning of an organization. While data
warehousing solutions have greatly evolved, many of the original characteristics and
assumptions of their architectural model remain the same. Data is:

• Extracted from many operational databases and sources•
• Transformed into a universal schema—represented in a multidimensional and•

time-variant tabular format
• Loaded into the warehouse tables•
• Accessed through SQL-like queries•
• Mainly serving data analysts for reporting and analytical visualization use cases•

The data warehouse approach has been refined to data marts with the common dis‐
tinction that a data mart serves a single department in an organization, while a data
warehouse serves the larger organization integrating across multiple departments.
Regardless of their scope, from an architectural modeling perspective, they both have
similar characteristics.

The difficulty and cost of creating a single technology capable of organizational-scale
data warehousing has led to enterprise data warehouse solutions that are often pro‐
prietary and expensive and require specialization to use. Over time, they include
thousands of ETL jobs, tables, and reports that only a specialized group can under‐
stand and maintain. Given their age and origin, they often don’t lend themselves to
modern engineering practices such as CI/CD and incur technical debt over time and
an increased cost of maintenance. Organizations attempting to escape this technical
debt find themselves in a perpetual cycle of migrating from one data warehouse solu‐
tion to another. Figure 8-1 shows the light-level architecture of the data warehouse
architecture.
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Figure 8-1. Analytical data architecture: warehouse

Second Generation: Data Lake Architecture
Data lake architecture was introduced in 2010 in response to the challenges of data
warehousing architecture in satisfying the new uses of data: access to data by data
scientists in the machine learning model training process. Data scientists need data in
its original form, as close to the reality of the business as possible. Since data scientists
can’t predict how exactly the data needs to be modeled, they prefer access to raw data.
Additionally, machine learning training demanded massively parallelized data reads.

Data lake architecture, similar to a data warehouse, assumes that data gets extracted
from operational systems and loaded into a central repository often in the format
of an object store—storage of any type of data. However, unlike data warehousing,
a data lake assumes very little or no transformation and modeling of the data up
front; it attempts to retain the data close to its original form. Once the data becomes
available in the lake, the architecture gets extended with elaborate transformation
pipelines to model the higher value data and store it in lakeshore marts or feature
stores at the edge of the lake. There are refinements to this approach, with allocated
“zones” in the lake, storing data with varying degrees of cleansing and transforma‐
tion, to organize the lake a bit better.
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This evolution to data architecture aims to improve this ineffectiveness and the
friction of extensive up-front modeling that data warehousing demands. The up-front
transformation is a blocker and leads to slower iterations of model training. Addi‐
tionally, it alters the nature of the operational system’s data and mutates the data
in a way that models trained with transformed data fail to perform against real
production queries.

In our example, a music recommender, when trained against transformed and mod‐
eled data in a warehouse, fails to perform when invoked in an operational context,
e.g., invoked by the recommender service with the logged-in listener’s session infor‐
mation. The heavily transformed data used to train the model either misses some of
the listener’s attributes or has encoded a different representation of them. Data lake
comes to the rescue in this scenario.

Notable characteristics of a data lake architecture include:

• Data is extracted from many operational databases and sources.•
• Data represents as much as possible of the original content and structure.•
• Data is minimally transformed to fit the popular storage formats, e.g., Parquet,•

Avro, etc.
• Data—as close as possible to the source schema—is loaded to scalable object•

storage.
• Data is accessed through the object storage interface—read as files or data•

frames, a two-dimensional array-like structure.
• Data scientists mainly access the lake storage for analytical and machine learning•

model training.
• Downstream from the lake, lakeshore marts are created as fit-for-purpose data•

marts.
• Lakeshore marts are used by applications and analytics use cases.•
• Downstream from the lake, feature stores are created as fit-for-purpose columnar•

data modeled and stored for machine learning training.
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Figure 8-2 shows the high-level architecture of the data lake.

Figure 8-2. Analytical data architecture: data lake

Data lake architecture suffers from complexity and deterioration. It creates complex
and unwieldy pipelines of batch or streaming jobs operated by a central team of
hyper-specialized data engineers. It deteriorates over time. Its unmanaged datasets,
which are often untrusted and inaccessible, provide little value. The data lineage and
dependencies are obscured and hard to track.
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1 At the time of this writing, Google BigQuery ML or Snowflake Snowpark are examples of traditional
data warehouse solutions that embed some ML capabilities, and Databricks Lakehouse is an example of a
traditional lake storage solution with warehouse-like transactions and query support.

2 An early-stage venture capital firm in New York City.

Third Generation: Multimodal Cloud Architecture
The third and latest generation of data architectures, prior to data mesh, is more
or less similar to the previous generations, with a few modern twists, as those data
architectures:

• Support streaming for near real-time data availability with architectures such as•
Kappa.

• Attempt to unify batch and stream processing for data transformation with•
frameworks such as Apache Beam.

• Fully embrace cloud-based managed services and use modern cloud-native•
implementations with isolated compute and storage. They leverage the elasticity
of the cloud for cost optimization.

• Converge the warehouse and lake into one technology, either extending the data•
warehouse to include embedded ML training, or alternatively building data ware‐
house integrity, transactionality, and querying systems into data lake solutions.1

These third-generation data platforms are addressing some of the gaps of the previ‐
ous generations such as real-time data analytics, while also reducing the cost of
managing big data infrastructure. However, they suffer from many of the underlying
characteristics that have led to the limitations of the previous generations.

Let’s look at the limiting characteristics of the existing analytical data architectures.

Characteristics of Analytical Data Architecture
From a quick glance at the history of analytical data architecture, it is apparent that
it has gone through evolutionary improvements. In the meantime, technology and
the products supporting it have gone through a Cambrian explosion. The dizzying
view of FirstMark’s2 annual landscape and “state of the union” in big data and AI
(Figure 8-3) is an indication of the sheer number of innovative solutions developed in
this space.
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Figure 8-3. The Cambrian explosion of big data and AI technologies: it’s not intended to
be read—just glance and feel dizzy (courtesy of FirstMark)

So the question is, what hasn’t changed? What are the underlying characteristics
that all generations of analytical data architecture carry? Despite the undeniable
innovation, there are fundamental assumptions that have remained unchallenged for
the last few decades and must be closely evaluated:

• Data must be centralized to be useful—managed by a centralized organization,•
with an intention to have an enterprise-wide taxonomy.

• Data management architecture, technology, and organization are monolithic.•
• The enabling technologies drive the paradigm—architecture and organization.•

The architectural characteristics discussed in this chapter, includ‐
ing centralization, are applied only to the logical architecture. Phys‐
ical architecture concerns, such as where data is physically stored,
are out of scope for our conversation, and it’s independent of the
logical architecture concerns. The logical architecture focuses on
the experience layer of the data developers and consumers, such as
whether data is being managed by a single team or not (data own‐
ership), whether data has a single schema or not (data modeling),
and whether a change on one data model has tight coupling and
impact on downstream users (dependencies).
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3 Mark Richards and Neal Ford, Fundamentals of Software Architecture, (Sebastopol, CA: O’Reilly, 2020).

Let’s look more closely at each of these underlying assumptions and the limitations
each imposes.

Monolithic
The core assumption that data mesh challenges is the monolithic nature of data
architecture, organization and technology. Let’s look at each of these.

Monolithic architecture

Architecture styles can be classified into two main types: monolithic (single deploy‐
ment unit of all code) and distributed (multiple deployment units connected through
remote access protocols).

—Fundamentals of Software Architecture3

At 30,000 feet, the data platform architecture looks like Figure 8-4; it is a monolithic
architecture whose goal is to:

• Ingest data from all corners of the enterprise and beyond, ranging from opera‐•
tional and transactional systems in domains that run the business to external data
providers that augment the knowledge of the enterprise.

• For example, in the case of Daff, the data platform is responsible for ingesting•
a large variety of data: media player performance, how listeners interact with
players, songs they play, artists they follow, labels and artists that the business has
onboarded, financial transactions with artists, and external market research data
such as customer demographic information.

• Cleanse, enrich, and transform the source data into trustworthy data that can•
address the needs of a diverse set of consumers. In Daff ’s example, one of the
transformations turns listener clicks stream into meaningful listener journeys.
This attempts to reconstruct the journey and behavior of the listener into an
aggregate longitudinal view.

• Serve datasets to a variety of consumers with a diverse set of needs. This ranges•
from data exploration and machine learning training to business intelligence
reports. In the case of Daff, the platform must serve media player errors in
near real time through a distributed log interface and at the same time serve the
batched aggregate view of a particular artist record to calculate monthly financial
payments.
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Figure 8-4. The 30,000-foot view of the monolithic data platform

While a monolithic architecture can be a good and a simple starting point for
building a solution—e.g., managing one code base, one team—it falls short as the
solution scales. The organizational complexity and proliferation of sources and use
cases create tension and friction on the architecture and organizational structure:

Ubiquitous data and source proliferation
As more data becomes ubiquitously available, the ability to consume it all and
harmonize it in one place, logically, under the control of a centralized platform
and team diminishes. Imagine the domain of customer information. There are
an increasing number of sources inside and outside an organization’s boundaries
that provide information about existing and potential customers. The assump‐
tion that we need to ingest and harmonize the data under a central customer
master data management to get value creates a bottleneck and slows down our
ability to take advantage of diverse data sources. The organization’s response to
making data available from new sources slows down as the number of sources
increases.

Organizations’ innovation agenda and use case proliferation
The need for rapid experimentation by organizations introduces a larger number
of use cases that consume data from the platform. This implies an ever-growing
number of transformations to create data—aggregates, projections, and slices—
that can satisfy the test and learn cycle of innovation. The long response time
to satisfy data consumer needs has historically been a point of organizational
friction and remains so in the modern data platform architecture. The disconnect
between people and systems who are in need of data and understand the use case,
from the actual sources, teams, and systems who originated the data and are most
knowledgeable about the data, impedes a company’s data-driven innovations.
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It lengthens the time needed to access the right data, becomes a blocker for
hypothesis-driven development, and lowers data quality and trust in data.

Organizational complexity
When we add the volatility and continuous change of the data landscape to the
mix, this monolithic architecture becomes a synchronization and prioritization
hell. Aligning the organization’s shifting data priorities and activities at large with
the centralized data platform is a no-win situation.

Monolithic technology
From a technology perspective, the monolithic architecture has been in harmonious
accordance with its enabling technology; technologies supporting data lake or data
warehouse architecture, by default, assume a monolithic architecture. For example,
data warehousing technologies such as Snowflake, Google BigQuery, and Synapse
all have a monolithic logical architecture. While at the physical and implementation
layer there has been immense progress in resource isolation and decomposition—for
example, Snowflake separates compute resource scaling from storage resources, and
BigQuery uses the latest generation distributed file system—the user experience of
the technology remains monolithic.

Data lake technologies such as object storage and pipeline orchestration tools can be
deployed in a distributed fashion. However, by default, they do lead to the creation of
monolithic lake architectures. For example, data processing pipeline directed acyclic
graph (DAG) definitions and orchestrations lack constructs such as interfaces and
contracts that abstract pipeline jobs dependencies and complexity, leading to a big
ball of mud monolithic architecture with tightly coupled labyrinthic pipelines, where
it is difficult to isolate change or failure to a single step in the process. Some cloud
providers have limitations on the number of lake storage accounts, having assumed
that there will be only a small number of monolithic lake setups.

Monolithic organization
From an organizational perspective, Conway’s law has been at work and in full swing
with monolithic organizational structures—business intelligence teams, data analytics
groups, or data platform teams—responsible for data across the organization.

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

—Melvin Conway, 1968

When we zoom close enough to observe the lives of the people who build and operate
a data platform, we find a group of hyper-specialized data engineers siloed from
the operational units of the organization, where the data originates or where it is
used. The data engineers are not only siloed organizationally but also separated and
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grouped into a team based on their technical expertise of data tooling, often absent of
business and domain knowledge (Figure 8-5).

Figure 8-5. Siloed hyper-specialized data team

I personally don’t envy the life of a data engineer in a monolithic data organization.
They need to consume data from operational teams who are not incentivized to
share meaningful, truthful, and correct data, based on an agreed-upon contract.
Given the data team’s organizational silo, despite best efforts, these data engineers
have little understanding of the source domains that generate the data and lack the
domain expertise in their teams. They need to provide data for a diverse set of needs,
operational or analytical, without a deep understanding of how data is used.

For example, at Daff, on the source side we have a cross-functional media player
team that provide signals of how users interact with media player features, e.g., play
song events, purchase events, and play audio quality; and on the other end sits a
cross-functional consumer team such as the song recommendation team, the sales
team reporting sales KPIs, the artist payment team that calculates and pays artists
based on play events, and so on. Sadly, in the middle sits the data team that through
sheer effort provides analytical data on behalf of all sources and to all consumers.

In reality what we find are disconnected source teams, frustrated consumers fighting
for a spot on top of the data team’s backlog, and an overstretched and underappreci‐
ated data team.

The complicated monolith
Monolithic architectures when they meet scale—here, the scale in diversity of sour‐
ces, consumers, and transformations—all face a similar destiny, becoming complex
and difficult to maintain.

The complexity debt of the sprawling data pipelines, the duct-taped scripts imple‐
menting the ingestion and transformation logic, the large number of datasets—tables
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or files—with no clear architectural and organizational modularity, and the thou‐
sands of reports built on top of those datasets keep the team busy paying the interest
of the debt instead of creating value.

In short, a monolithic architecture, technology, and organizational structure are not
suitable for analytical data management of large-scale and complex organizations.

Centralized Data Ownership
It’s an accepted convention that the monolithic data platform hosts and owns the
data that belongs to different domains, e.g., play events, sales KPIs, artists, albums,
labels, audio, podcasts, music events, etc., collected from a large number of dispa‐
rate domains (Figure 8-6).

Figure 8-6. Centralized data ownership with no clear domain boundaries

While over the last decade we have successfully applied domain-driven design and
bounded context to the design of our operational systems to manage software com‐
plexity at scale, we have largely disregarded domain-driven design paradigm for data.
DDD’s strategic design introduces a set of principles to manage software modeling
at scale in a large and complex organization. It encourages moving away from a
single canonical model to many bounded context models. It assumes multiple models
each owned and managed by a unit of organization. And it explicitly articulates the
relationships between these models.

While operational systems have applied DDD’s strategic design techniques toward
domain-oriented operational data ownership—aligning the services and their data
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with existing business domains—analytical data systems have retained centralized
data ownership outside of the domains.

While this centralized model can work for organizations that have simpler domains
with a smaller number of use cases, it fails for enterprises with rich and complex
domains.

In addition to limitations of scale, other challenges of data centralization are data
quality and resilience to change. This is because business domains and teams that
are most familiar with the data are not responsible for data quality. The central data
team, far from the source of the data and isolated from the domains of the data, is
tasked with building quality back into the data through data cleansing and enriching
pipelines. Often, the data that pops out of the other end of the pipelines into the
central system loses its original form and meaning.

Centralization of analytical data has been our industry’s response to siloed and frag‐
mented application databases, commonly known as dark data. Coined by Gartner,
dark data refers to the information assets organizations collect, process, and store
during regular business activities, but generally fail to use for analytical or other
purposes.

Technology Oriented
Looking back at different generations of analytical data architectures, from ware‐
house to lake and all on the cloud, we have heavily leaned on a technology-driven
architecture. A typical solution architecture of a data management system merely
wires together various technologies, each performing a technical function, a piece
of the end-to-end storage and processing flow. This is evident from a glance at
any infrastructure provider’s modern solution architecture diagram, like the one in
Figure 8-7. The core technologies listed in the figure are powerful and helpful in ena‐
bling a data platform. However, the proposed solution architecture decomposes and
then integrates the components of the architecture based on their technical function
and the solution supporting the function. For example, first we encounter the inges‐
tion function supported by Cloud Pub/Sub and then publishing data to Cloud Stor‐
age, which then serves data through BigQuery. This approach leads to a technically
partitioned architecture and consequently an activity-oriented team decomposition.
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Figure 8-7. Example of a modern analytical architecture influenced by a technology-
oriented decomposition

Technically partitioned architecture
One of the limitations of data management solutions today is how we have attempted
to manage its unwieldy complexity, how we have decomposed an ever-growing mon‐
olithic data platform and team to smaller partitions. We have chosen the path of least
resistance, a technical partitioning.

Architects and technical leaders in organizations decompose an architecture in
response to its growth. The need to onboard numerous new sources or respond
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to the proliferation of new consumers requires the platform to grow. Architects need
to find a way to scale the system by breaking it into its top-level components.

As defined by Fundamentals of Software Architecture (O’Reilly), top-level technical
partitioning decomposes the system into its components based on their technical
capabilities and concerns; it’s a decomposition that is closer to the implementation
concerns than business domain concerns. Architects and leaders of monolithic data
platforms have decomposed monolithic solutions based on a pipeline architecture
into its technical functions such as ingestion, cleansing, aggregation, enrichment, and
serving (Figure 8-8). The top-level functional decomposition leads to synchronization
overhead and slow response to data changes. An alternative approach is a top-level
domain-oriented partitioning, where these technical functions are embedded in every
domain, where the change to the domain can be managed locally without top-level
synchronization.

Figure 8-8. Top-level technical partitioning of monolithic data architecture

Activity-oriented team decomposition
One of the motivations behind breaking a system down into its architectural compo‐
nents is to create independent teams that can each build and operate an architectural
component. These teams in turn can parallelize work to reach higher operational
scalability and velocity. The consequence of top-level technical decomposition is
decomposing teams into activity-oriented groups, each focused on a particular activity
required by a stage of the pipeline, for example, a team focusing on ingestion of data
from various sources or a team responsible for serving the lakeshore marts. Each team
attempts to optimize their activity, for example find patterns of ingestion.

Though this model provides some level of scale, by assigning teams to different activ‐
ities of the flow, it has an inherent limitation that does not scale what matters: deliv‐
ery of outcome—in this case, delivery of new quality and trustworthy data. Delivering
an outcome demands synchronization between teams and aligning changes to the
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activities. Such decomposition is orthogonal to the axis of change or outcome, slows
down the delivery of value, and introduces organizational friction (Figure 8-9).

Conversely, an outcome-oriented team decomposition optimizes for an end-to-end
outcome, delivered rapidly and with low synchronization overhead.

Let’s look at an example. Daff started its services with songs and albums and then
extended to music events, podcasts, and radio shows. Enabling a single new feature,
such as visibility to the podcast play rate, requires a change in all components of
the pipeline. Teams must introduce new ingestion services, new cleansing and prepa‐
ration services, and new data aggregates for viewing podcast play rates. This requires
synchronization across implementations of different components and release man‐
agement across teams. Many data platforms provide generic and configuration-based
ingestion services that can cope with extensions such as adding new sources easily or
modifying existing ones. However, this does not remove an end-to end-dependency
hell of introducing new datasets from the consumer point of view. The smallest
unit that must change to cater to a new functionality, unlocking a new dataset and
making it available for new or existing consumption, remains the whole pipeline—
the monolith. This limits our ability to achieve higher velocity and scale in response
to new consumers or sources of the data.

Figure 8-9. Architecture and team decomposition is orthogonal to the axis of change
(outcome)

We have created an architecture and organization structure that does not scale and
does not deliver the promised value of creating a data-driven organization.

In recent years, there has been a move toward decomposing the
central data team into domain-oriented data teams. While this is
an improvement, it does not solve the issue of long-term data
ownership and data quality. The data team remains far from the
actual domains, out of sync with domain system changes and their
needs. This is an antipattern.
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Recap
The definition of insanity is doing the same thing over and over again and expecting
different results.

—Albert Einstein

This chapter aimed to give you a perspective on the progression of analytical data
architecture and organizational structure. It gave an overview of different styles of
two-plane data architectures: warehouse, lake, and multimodal. It pointed out that all
of these approaches have a pipeline-based integration model that remains fragile and
hard to maintain.

While the evolution of data architecture has been necessary and an improvement, all
of the existing analytical data architectures share a common set of characteristics that
inhibit them from scaling organizationally. They are all monolithic with centralized
ownership and technically partitioned.

These characteristics are the consequence of an age-old assumption that to satisfy
analytical use cases, data must be extracted from domains and consolidated and
integrated under the central repositories of a warehouse or a lake. This assumption
was valid when data use cases were limited to low-frequency reports. It was valid
when data was being sourced from a handful of systems. It is no longer valid when
data gets sources from hundreds of microservices and millions of devices from within
and outside of enterprises. It is no longer valid when tomorrow’s use cases for data
are beyond our imagination today.

This chapter concludes Part II. With an understanding of what data mesh is and why
you should care about it, let’s discuss its technical architecture in Part III.
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1 Martin Fowler’s summary definition of architecture influenced by Ralph Johnson.

PART III

How to Design the Data Mesh
Architecture

The supreme goal of all theory is to make the irreducible basic elements as simple and
as few as possible without having to surrender the adequate representation of a simple
datum of experience.

—Albert Einstein

Up to this point in the book, I’ve left the technical design of a data mesh architec‐
ture to your imagination. This was necessary. We first needed to share a common
understanding of what data mesh is (Part I) and agree on why we need to shift
toward it (Part II). Now it’s time to model an architecture that enables a technical
implementation of the data mesh.

The Scope
At the time of this writing, data mesh is in its early years of development. We still
have a long way to go to learn about its optimal design. Hence, the scope of this
part is respectful of the fact that data mesh design and implementation will continue
to evolve. Nevertheless, we have to start somewhere. So I’ve decided to dedicate this
chapter to the important stuff1 that matters today, aspects of architecture that I think
will continue to last and influence the development of future implementations.
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What is the important stuff?

It’s important to have a shared understanding of logical architecture. In Chapter 9,
“The Logical Architecture”, I will define the main logical components of data mesh
architecture such as domains, data product as an architecture quantum, and multiple
planes of data platform and how they interact with each other.

Chapter 10, “The Multiplane Data Platform Architecture”, defines the capabilities
that an infrastructure platform must offer to build, run, and operate an implementa‐
tion of data mesh. It offers an overall approach to designing the platform, independ‐
ent of its technologies.

What is not included in this book is the physical layer of the architecture and specific
technologies that one can use today to implement the architectural components. For
example, whether you should use Apache Airflow, Prefect, or Azure Data Factory to
manage data product transformation flow is out of scope here.

The intention of this section is to remove room for misinterpretation and misuse of
data mesh, while being open enough to allow creative thinking and creation of a new
set of technologies and tools to bring this paradigm to life, elegantly.

Figure III-1 demonstrates a few examples of areas that are in scope and out of scope
for this book.

Figure III-1. The scope is more on the architecture and less on design for implementation

Maturity
This part of the book is partly based on my experience implementing data mesh
architectures and partly on personal opinion. Some concepts are implemented and
tested, and some are more speculative and require further experimentation and
testing.

What you find in this part of the book is my suggestion to how a data mesh archi‐
tecture can be implemented, today, based on available technologies. It’s one way of
instantiating the principles of data mesh. It is influenced by approaches that have



proven successful in similar scaled-out architectures and adapted to the data problem
space.

I will make it clear when a topic is experimental and requires further exploration and
refinement.





CHAPTER 9

The Logical Architecture

Form ever follows function.
—Louis Sullivan

In this chapter I present the logical architecture of data mesh, including its high-level
structural components and their relationships.

To arrive at the architecture, I’ll walk you through the data mesh principles and show
how each of these principles influences the overall architecture with new components
and integrations—we follow the function and intention to arrive at the form.

Here is a quick summary of architectural concepts that I will unpack in this chapter,
driven by each principle:

Domain ownership extends domains with analytical data sharing interfaces
Domain ownership of data results in a domain-centric organization of analytical
data. This means that a domain’s interfaces must extend to sharing its analytical
data. Figure 9-1 demonstrates this extension notationally.
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Figure 9-1. Domain interfaces extended with analytical data sharing interfaces

Data as a product introduces a new architecture quantum, aka data quantum
Data mesh represents each data product as an architecture quantum. As an
architectural quantum, a data product encapsulates all the necessary components
needed to implement its usability characteristics and the behavior of securely
sharing analytical data.

A data quantum is the foundational unit of a data mesh architecture. It holds the
domain-oriented data and the code that performs the necessary data transforma‐
tions and shares the data and the policies governing the data. Figure 9-2 shows
the main constituents of a data quantum.
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Figure 9-2. A new unit of architecture, the data (product) quantum

The self-serve data platform drives a multiplane platform architecture
The self-serve platform offers a proliferation of services that empower a wide
spectrum of the data mesh users to do their job: data producers (data product
developers, data product owners), data consumers (data analysts and data scien‐
tists), and members of the data governance function. Data mesh designs this
platform as three planes—groups of collaborating services arranged based on the
experience of data mesh users. Figure 9-3 shows the planes of the platform.
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Figure 9-3. A multiplane data platform with declarative interfaces

Federated computational governance embeds computational policies into each data
product

The principle of federated computational governance leads to an extension of
each data product with a computational container that can host a sidecar process
that embeds the computational policies in each and every data product and
executes them at the right time and in the flow of data—e.g., build, deploy, access,
read, or write.

A data product sidecar is a process that shares the execution context of a data
product and is only responsible for domain-agnostic and cross-cutting concerns
such as policy execution. In addition to policy execution, the sidecar process can
be extended to implement other standardized features of a data product such as
discovery.

The sidecar implementation is common across all data products.

Figure 9-4 introduces the concept of a data product sidecar sharing a computa‐
tional container (context) with its data product.

146 | Chapter 9: The Logical Architecture



1 Chapter 1 defines analytical and operational data.

Figure 9-4. A data product extended with a sidecar to embed the configuration and
execution of policies

At the time of this writing, there are multiple private implementations of these archi‐
tectural components that I have been involved with working with clients. Each of
these implementations has been different. Hence, there are no de facto standards or
reference implementations publicly available yet. I hope that changes in the coming
years.

Let’s look a bit more closely at each of these architectural components.

Domain-Oriented Analytical Data Sharing Interfaces
To promote a domain-oriented decomposition of data ownership, we need to model
an architecture that arranges the analytical data1 by domains. In this architecture, a
domain’s interface to the rest of the organization not only includes the operational
capabilities but also shares the analytical data that a domain generates and owns.

For example, the podcast domain provides operational APIs to, semantically, create
a new podcast episode but also provides an analytical data interface for retrieving all
podcast episodes data and their usage stats over a long period of time.

Each domain controls its data—operational and analytical. My assumption is that
domains already have operational interfaces, the application APIs. This is not
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something that data mesh introduces, but data mesh integrates with operational APIs.
In addition to operational APIs, domains control and manage their analytical data
sharing APIs.

To scale, the architecture must support the autonomy of the domain teams with
regard to the release and deployment of their operational applications and analytical
data products.

Figure 9-5 demonstrates the graphical notation I use to articulate that each domain
can expose one or many operational and analytical interfaces.

Figure 9-5. Notation: a domain and its analytical and operational interfaces

Let’s look a bit more closely at each of these interfaces and their dependencies.

Operational Interface Design
Today, domains implement their operational capabilities with a range of solutions.
For example, a domain can have customer-facing GUI applications, head-less appli‐
cations, legacy systems, SaaS products, microservices, or event-driven functions as a
service.

Regardless of the type of solutions, logically, each domain serves its users—systems or
people, internal or external to the organization—through a set of interfaces.
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For example, in the case of a microservice implementing a domain function, the
domain interface includes the APIs—GraphQL, REST, gRPC, etc.—that the microser‐
vice exposes. These domain interfaces are depicted by the “O” lollipop in the previous
diagram.

Operational interfaces semantically implement a function, e.g., pay an artist or sub‐
scribe a listener. Syntactically, these functions can be implemented as operations
on declarative resources that get modified with CRUD operations, e.g., HTTP POST/
artists-payments.

The operational interfaces are typically designed to access smaller volume data, and
they provide the current near-real-time snapshot of the state known to the system.
For example, an operational API of the listener subscription service can have the
affordance to get the list of subscribed listeners, in North America, now with pagina‐
tion, e.g., HTTP GET/listeners-subscriptions?region=NA.

Data mesh does not change this preexisting aspect of the enterprise architecture; it
simply acknowledges its existence. In some cases, data mesh uses the operational
interfaces to create data products.

Analytical Data Interface Design
A new set of interfaces is introduced with the extension of the domain’s responsibility
to share analytical data. These interfaces are marked as “A” in Figure 9-5.

Analytical interfaces are the APIs that data products expose to get discovered, under‐
stood, and observed and to share their data. At the time of this writing there are no
widely accepted conventions on high-level APIs that encapsulate all these functions.

For analytical data sharing, the APIs may choose to redirect the clients to the under‐
lying storage of the data, once the access policies are enforced. Depending on the data
product’s implementation, the data sharing interface can redirect access to either a
blob storage (e.g., Parquet files from AWS S3) or an event stream (e.g., Kafka Topic),
or a table (e.g., BigQuery Table) or something completely different.

Interdomain Analytical Data Dependencies
Naturally, each domain can have dependencies to other domains’ operational and
analytical data interfaces.

In the following example (Figure 9-6), each domain provides a few operational and
analytical interfaces. For example, the podcast domain provides a few operational
APIs to create a podcast episode or release a podcast episode. It also provides analyti‐
cal data such as get podcast (listener) demographics and get top daily podcasts.
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There are dependencies between each domain. For example, the podcast domain
consumes information about listener demographics from the listener domain, to
provide a picture of the demographic of podcast listeners.

The mechanics of establishing the dependency—asynchronously using events or
pulled synchronously—is an implementation concern. But the important point is that
a data product explicitly defines its dependencies to its sources.

In data mesh architecture, the data dependency is defined and controlled by a data
product to its upstream source. A data product is in full control of what its sources
are and what data it consumes from them and how.

Figure 9-6. Example: domain-oriented data dependencies

In this example, the labels I have used for the interfaces define
the semantic of the interface and not its syntax. For example, syn‐
tactically, the semantic of pay an artist can be implemented as a
declarative resource—RESTful resource or GraphQL query—such
as artist-payments.
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Data Product as an Architecture Quantum
An architectural quantum, defined in Building Evolutionary Architectures (O’Reilly),
is the smallest unit of architecture that can be independently deployed, has high func‐
tional cohesion, and includes all the “structural elements required for its function.”

In the case of data mesh, a data product is an architectural quantum. It is the
smallest unit of architecture that can be independently deployed and managed. It
has high functional cohesion, i.e., performing a specific analytical transformation and
securely sharing the result as domain-oriented analytical data. It has all the structural
components that it requires to do its function: the transformation code, the data, the
metadata, the policies that govern the data, and its dependencies to infrastructure.

In a strictly architectural discussion, like this chapter, I may abbre‐
viate data product (as an architecture quantum) and use data prod‐
uct quantum, or lazily, data quantum. All these are interchangeable.
Data quantum is data mesh’s opinionated way of designing the
architecture of a data product.
You may find it helpful to know why I have chosen the seemingly
big and, to many, unfamiliar phrase data quantum. Why not a
data service, data actor, data agent, data operator, data transformer,
etc. They may all seem like OK choices. Most of the names such
as operator, transformer, etc., heavily emphasize a single aspect
of the data quantum, its task, and transformation execution. Sim‐
ilarly, data service emphasizes another aspect, serving data. Quan‐
tum, first introduced in Building Evolutionary Architectures and
later expanded in the book Software Architecture: The Hard Parts
(O’Reilly), perfectly embodies the intention of data quantum: all
that is required to do its job autonomously—whatever the job is.
I hope you accept my reasoning for the neologism in the heavily
populated tech vocabulary.

An architecture quantum is the axis over which a system can scale out. Data mesh
scales out by adding and connecting more data products. An architecture quantum
integrates with other components through static coupling (e.g., build-time libraries)
or dynamic coupling (e.g., asynchronous runtime APIs). A data product integrates
with other data products through a dynamic coupling of data sharing interfaces.

Part IV is a deep dive into different aspects of a data product as an architecture
quantum.
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A Data Product’s Structural Components
A data product encapsulates more than just the data. It needs to contain all the struc‐
tural components needed to manifest its baseline usability characteristics—discovera‐
ble, understandable, addressable, etc.—in an autonomous fashion, while continuing
to share data in a compliant and secure manner.

At a high level, data products have three types of structural components: code,
data (and metadata and configuration), and the specifications of its infrastructure
dependencies (Figure 9-7).

Figure 9-7. Types of structural elements of a data product
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The code
For a data product to independently control the life cycle of analytical data—maintain
the business logic that generates it, control its revisions, manage access to it, and
share its content—it must include code and run it within its computational context.
This is a fundamental difference between what data mesh calls a data product and
other forms of data artifacts. A data product is active while other data artifacts like
files or tables are passive.

Let’s look at a few different types of code that a data product controls.

Data transformation as code.    Data products either transform data received from an
upstream source, e.g., from their adjacent operational system, or originate the data
themselves. Either way, there is a need for an analytical computation to generate and
share data.

For example, podcast demographics consumes listener demographics and played
podcasts by listeners. Its analytical transformation code aggregates the two, derives
and adds other information about the demographic of listeners based on their pod‐
cast listening behavior such as the category of podcasts they listen to, and then shares
the result as podcast demographics. It runs this code continuously as new podcasts
are played.

In traditional architectures, this code lives outside of a data product, as a data pipe‐
line. A pipeline is managed as an independent artifact, perhaps a DAG configuration.
Its output data is managed independently, perhaps as a table in a warehouse.

Data mesh removes the concept of an external pipeline and introduces the internal
transformation code. This code may be implemented as a pipeline, or not. The
important differentiating point is that the code is encapsulated as an internal imple‐
mentation of a data product. Its life cycle is controlled by the data product, and it
runs in the execution context allocated to the data product.

The transformation code is domain-specific and encapsulates tasks such as a domain’s
business logic as well as aggregating and modeling data. This is the code on which data
product developers spend the majority of their time and attention. Figure 9-8 shows
the notation I use in this book to demonstrate a data product’s transformation code.

The code includes both the implementation and the automated tests that verify it.

Note that I have left out the traditional data pipeline steps such as data ingestion
or data cleansing from the transformation code. This is to further demonstrate the
difference between data mesh and traditional pipelines.
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Figure 9-8. A data product’s transformation code

Data cleansing is almost always the responsibility of the upstream source—e.g., data
products. It provides data with integrity. Hence, the typical cleansing activities are
rarely required in a data product code. Traditionally, data cleansing activities in pipe‐
lines include handling incomplete, incorrect, inaccurate, or irrelevant data. Expecting
data to be dirty is a norm. In the case of data mesh, upstream data products provide
cleansed data, according to their guarantees. For example, in the case of listener dem‐
ographics, the data product guarantees a level of quality in terms of completeness
of data, integrity of data, and timeliness of data. The data sharing interfaces specify
these guarantees and communicate them. Receiving dirty data surprises is an error,
an exception, and not a norm. It’s likely that these guarantees are good enough for
podcast demographics, which consumes this data for further aggregation. Hence, it
requires no further cleansing.

There could be cases where the level of a guarantee is lower than the need of
the downstream data product, in which case their transformation code can include
cleansing. For example, the listener subscriptions data product generates near-real-
time events of subscriptions without the payment information, since Daff handles the
subscription asynchronously from the actual payments. In this case, you can imagine
a downstream subscription payments data product that needs to consolidate the
events with payment information to create a complete picture of subscriptions. Even
in this case, I don’t call listener subscriptions dirty data. It’s a perfectly reasonable
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data product, even with missing information, for many other use cases. The missing
payment information is part of its contract. If you find yourself building a cleansing
task, I suggest that is a sign that something upstream needs to be fixed.

Regarding the ingestion, I consider this part of the input function of the data product
and not its transformation code. I will discuss that further later in this chapter.

Interfaces as code.    A data product provides access to its data, discoverability informa‐
tion, usability documentation, observability metrics, SLOs, etc., through its interfaces
(APIs). These APIs follow defined contracts—agreements on what information the
data product communicates and how.

To implement such interfaces there is code involved in providing the necessary
information and serving them. The lollipop notation encapsulates the interface and
its supporting code. Figure 9-9 demonstrates a list of these interfaces:

Output data APIs
There is a set of collaborating APIs that share the output data of a data product in
a way that can be understood and trusted.

Output data APIs can receive and run remote queries on their data, for example
an interface to run SQL queries on the underlying tables holding data. Output
APIs share the data in multiple formats. For example, APIs read semi-structured
files from blob storage or subscribe to an event stream.

Input data APIs
These APIs are used internally by the data product to configure and read
data from the upstream sources. They can be implemented as a subscription
to upstream output data APIs and asynchronously receive data as it becomes
available. They can be implemented as queries executed on an upstream source
and read as data frames. The arrival of input data triggers the transformation
code.

Discovery and observability APIs
These APIs provide additional information about the data product to help with
its discoverability and debugging. For example, a discovery API can provide
information about the team maintaining the data products, tags that help to
search for it, description of its semantic, etc.

The governance standardizes the definition of these interfaces across all data prod‐
ucts, and the platform provides the mechanisms to implement them.

Data mesh uses the phrase port interchangeably for its interface APIs. The implemen‐
tation of these APIs can be synchronous, such as REST, or asynchronous—ideally—
e.g., using pub/sub messaging.
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Figure 9-9. Data product APIs as code

Traditionally, a centralized and shared service implements these interfaces. The API
life cycles are independent of the domain’s data or pipeline. For example, to access the
data, a data consumer goes to a central catalog to find the dataset and then directly
from the central catalog reaches into the bowels of the platform storage system. In
contrast, data mesh introduces intentionally designed interfaces made available by
each data product as code, to discover and access the data. These interfaces may
ultimately direct access to the underlying storage, but in a manner that data products
can control—at runtime—where and how to do that. The interfaces stay versioned
and in sync with the rest of the data product code and its data.

Policy as code.    The last category of code encapsulated by a data product implementa‐
tion is the code responsible for configuring and executing various behavioral and
structural policies, such as encryption, access control, quality, and compliance.

For example, if a data product sets a privacy classification, protected, its data will
be encrypted on write and on read unencrypted only after verifying that the reader
has the necessary privileges. The code involved in interpreting and validating the
privacy class, verifying the readers’ privileges, encrypting and decrypting data, etc.,
are executed in the flow of data and within the computational context of a data
product.
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This code is provided by the platform but invoked in the flow to data product read
and write functions.

I further explain this in the section “Embedded Computational Policies” on page 164.

The data and metadata
Access to analytical data is the reason that a data product exists. A data product
manages the life cycle of its domain data. It provides access to it in multiple modes—
files, tabular, columnar, etc.—depending on the nature of the data and the needs of
its data users. Data products’ transformation code keeps the data fresh. Data sharing
APIs share this data.

Analytical data reflects the facts of the business that have happened, the trends
observed, or projections and recommendations for the future.

For data to be usable, data products maintain and serve an associated set of informa‐
tion about the data—often called metadata. For example, this includes the data’s doc‐
umentation, semantic and syntax declarations, and SLOs. The life cycle of metadata
and how often it changes depends on its type. For example, data models—semantic or
syntax—change less often and change at build time. However, most metadata changes
as a data product generates new data, including statistical properties of the data, and
its current SLO metric values.

I rarely use the term metadata in data mesh vocabulary. I often find this generic
catchall term confusing and even harmful. It conflates many semantically different
concepts that deserve their own intentional design and system support into a bucket
of all stuff called metadata. This conflation leads to fragile and centralized architec‐
tures that become a tangled complexity over time. Data mesh architecture expects
metadata and its categories and types to be part of the contract of the data product
interfaces.

The big departure from a traditional data architecture is that a data product itself
is responsible for generating the metadata, as opposed to traditional systems where
metadata is extracted, extrapolated, and projected by an external system—often after
the data has been generated. In the traditional world an external system such as a
central data catalog attempts to extract, collect, and serve metadata from all datasets.

The platform dependencies
The platform enables building, deploying, and running data products. While the plat‐
form manages infrastructure resources centrally, it provisions and allocates resources
with isolation per data product to support its autonomous operation. It’s important
that deployment or update of one data product doesn’t impact other data products.
For example, deploying one data product to its hosting infrastructure should not
disrupt the operation of others on a shared infrastructure.
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A data product defines and controls its expected target state and its dependencies
to the platform. For example, the expectations around how long its data needs to
be retained or the types of modes of access to its output data can be expressed as
platform dependencies and used by the platform to provision and manage the right
type of storage.

Data Product Data Sharing Interactions
The majority of data product interactions are about sharing data—serving and con‐
suming. Figure 9-10 zooms into the domain and analytical interface that I introduced
in the previous section. It demonstrates how data products integrate with their
collaborating source operational system(s) or other data products.

Figure 9-10. Example of data sharing interactions

Each domain can have multiple data products. In this example, the listener domain
has two data products: subscriptions and listener demographics. These data prod‐
ucts and their data sharing interfaces—aka output data ports—become the analytical
interfaces that the domain exposes.

A data product can consume data from its collaborating operational system or an
upstream data product. In this example, the podcast demographics data product
consumes podcast events from its collaborating operational application podcast
service and an upstream data product listener demographics. Its input interface—
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aka input data port—implements integration with the sources and receiving data from
them.

The underlying technology implementing a data product’s input data port and output
data port may vary in different implementations of data mesh, but it shares the
following common properties.

Input data ports
These are internal integration mechanisms that a data product implements to con‐
sume data from one or multiple sources. For example, a data product may consume
near-real-time domain events from its collaborating microservice and then convert
them into historical long-term-retention analytical data.

Alternatively, the input data port could be a time-triggered query that the data
product invokes on an upstream data product to receive the result of the query and
transform it to aggregate data.

In Figure 9-10, podcast demographics is an aggregate data product that provides
a statistical summary of listeners’ population characteristics. It uses a classification
machine learning model to identify cohorts of the podcasts based on the demograph‐
ics of their listeners. This is helpful analytical information to both podcast producers
as well as Daff to better match podcasts with listeners.

The podcast demographics data product uses its input data ports to continuously
receive data from its collaborating microservice podcast service as well as the lis‐
tener domain’s data product listener demographics.

Output data ports
These are externally addressable APIs that share the underlying data of a data prod‐
uct. Each data product may have one or multiple output data ports. Data mesh
suggests having standardized APIs for the output data port that all consumers invoke
before getting access to the data. These APIs enforce policies such as access control
before redirecting the consumer to the underlying data.

In Figure 9-10, podcast demographics classifies and augments podcasts based on
their listeners. It continuously serves the newly classified podcast demographics via
its output data port.

Data Discovery and Observability APIs
Data products provide the information necessary to be discovered, understood,
debugged, and audited through a set of interfaces—synchronous or asynchronous.
For example, the discovery APIs share the data product’s identifier, the team owning
it, the data semantic, documentation, tags that help searching for it, etc. The observa‐
bility APIs provide access logs, lineage, and metrics around data sharing.
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Part IV expands on the content and function of these APIs.

The Multiplane Data Platform
One can imagine the long list of capabilities and services the data platform must
provide to meet the promises of data mesh as discussed in Chapter 4: in short, to
empower cross-functional domain teams to manage data products autonomously,
and to allow data users to discover, learn, and consume a mesh of data products, all
done securely and in compliance with the mesh policies.

There are two general approaches in designing such a platform: adopt a single and
tightly integrated platform—often bought from a main vendor—or use a set of loosely
integrated services that expose standard and open interfaces, often implemented as a
combination of build and buy from different vendors.

Data mesh platform design falls into the second camp. It favors breaking a complex
platform into its capabilities, served through APIs, with open interfaces to integrate
with other collaborating capabilities.

While the idea of a single platform is appealing—i.e., it is simpler to deal with one
vendor—it has limitations to scale. For example, a single platform limits where the
services and data can be hosted and creates lock-in to a vendor. Nonetheless, over
time, organization complexity leads to the adoption of multiple platforms. But these
platforms don’t play nicely with each other as each imagines being the sole controller
of the data or applications. This leads to ad hoc and costly integrations and expensive
copying of data across platforms.

Data mesh, by default, embraces the fact that organization complexity leads to mul‐
tiplatform, multihosting environments. To support this model, data mesh offers an
approach to platform architecture that composes services with standard interfaces. So
data can be shared across different services and hosting environments.

For example, managing a data product life cycle requires a collection of capabilities
such as initializing a data product, building the data product, testing the data product,
deploying the data product, monitoring the data product, etc. The data mesh platform
emphasizes the design of the (open) interfaces that abstract these capabilities. The
API-driven approach allows flexibility in the face of growing complexity. It allows
extending the experience of data product management with new capabilities over
time or moving data product management to different infrastructure without inter‐
ruption to the mesh users.
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I have intentionally avoided using the term layer for the platform
planes. Layers are often imagined with strict hierarchical access,
with the flow of information and control moving from one layer
to the next one. For example, the concept of layered application
architecture requires hiding database access at the lowest layer
and only allowing access to data via the mapped objects of higher
layers.
In the case of platform planes, a mesh user can choose to use the
higher abstraction plane services or the lower ones, depending on
their needs.

A Platform Plane
In the logical design of data mesh platform capabilities I use the notion of a plane.
A plane is a logical collection of capabilities with complementary objectives and high
functional cohesion in satisfying an end-to-end outcome.

Each plane, like a surface, abstracts infrastructure complexity and offers a set of
interfaces (APIs) for the capabilities it implements. The plane capabilities are accessed
through its interfaces.

An end user, such as a data product developer, can interact directly with multiple
planes of the platform. While there is a loose dependency between the planes, there is
no strong notion of layering or a hierarchical access model. The planes embrace the
separation of concerns without strong layering constraints.

The logical architecture of the data mesh platform focuses only on the planes’
interfaces, accessed programmatically or manually. It focuses on protocol design to
access platform capabilities to achieve a particular outcome in developing, deploying,
managing, or using data products on the mesh.

In the architecture modeling I only call out logical interfaces. The physical implemen‐
tation of the interface—whether through a command-line interface (CLI), APIs, or a
GUI and the actual number of physical calls for each logical interface—is out of the
scope of the architectural design.

Figure 9-11 demonstrates the notation I will be using to describe a specific plane
of the infrastructure platform, with a focus on the logical interfaces that one plane
provides. The users of a plane—systems or humans, data products, other planes or
users—should be able to use the interfaces in a self-serve manner and be able to
discover the interfaces and understand, access, and invoke them.
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Figure 9-11. Notation: A platform plane surfacing APIs

Given the complexity of the data mesh platform and its wide range of capabilities, its
logical architecture is composed of multiple planes. Thus far I have identified three
different planes for data mesh infrastructure.

Data Infrastructure (Utility) Plane
This plane is responsible for managing the low-level infrastructure resources to build
and run the mesh, e.g., storage, compute, identity system, etc. It integrates and
overlaps with the digital application infrastructure that builds and runs operational
systems. For example, the data infrastructure could share the same CI/CD engine for
data products that the rest of the domain team uses to develop applications. Another
example is the management of common storage types such as object stores for both
analytical and operational systems.

Data Product Experience Plane
This is a higher-level abstraction to build, maintain, and consume data products, built
using the infrastructure plane. Its interfaces work directly with a data product. For
example, it supports data product developers in managing the life cycle of a data
product—building a data product, deploying a data product, etc. It also supports data
product consumers in using a data product, e.g., subscribing to a data product output
and reading data.

Mesh Experience Plane
This plane abstracts the mesh-level capabilities operating on multiple data products.
For example, it supports operations such as searching for data products on the mesh
or traversing the lineage—the link between the input and output data products—
across multiple data products on the mesh.
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Example
Figure 9-12 shows the bird’s-eye view of the platform planes and a sample of logical
interfaces they can each provide. While there is no strict layering imposed by the
planes, meaning that any authorized user—program or person—can access the inter‐
faces of any of the planes, there is a dependency between the planes.

Figure 9-12. Multiple planes of the self-serve data platform

The mesh experience plane depends on the interfaces   of the data product plane—as it
aggregates them—and the data product experience plane relies on the interfaces of the
lower level infrastructure utility plane—as it abstracts them.

The interfaces mentioned in Figure 9-12 are only examples and
are not exhaustive. For clarity, I have used an imperative language
where in reality they will likely use a declarative resource-oriented
design. For example, in order to be clear about the interface’s inten‐
tion I have used /deploy dp to indicate the capability of “deploying
a data product as one unit,” while in practice one can design a
declarative API, e.g., HTTP POST/data-product-deployments.

In existing platforms such as a service mesh, the concept of two separate collaborat‐
ing planes, control and data planes, is borrowed from network routing. While this
separation of concerns can be applied to the data mesh platform as well (one can
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imagine that the data products constitute the data plane, and the platform constitutes
the control plane), I have intentionally stayed away from this design.

I have used the concept of experience to focus on affordances and experiences that the
platform provides at different levels, at the level of individual data products and at
the level of their collection as a mesh. For example, the platform offers the experience
of service discovery and addressability: the ability for other data products to program‐
matically find other data products, by name, and address them to consume their
data. This can of course then be imagined as the implementation of a control-like
plane that implements a dynamic registry, addressing, routing, etc. I consider these
implementation details that will follow the experience.

Essentially data mesh architecture designs the platform by contract of the experience
it provides to its users.

Chapter 10 dives deeper into the platform capabilities.

Embedded Computational Policies
Chapter 5 introduced a few types of computations that support data mesh gover‐
nance: computational policies, data product standardized protocols, and automated tests
and automated monitoring.

How we model the architecture to configure and execute the policies, impose stand‐
ards, and keep data products compliant with quality expectations has a direct impact
on how effective the governance function will be. Architecture is the conduit for
effective governance, getting the policies and standards applied to every data product
on the mesh.

Data quantum is a powerful and extensible construct to embed computational poli‐
cies in a distributed fashion. It can define and execute policies as code.

The policies expressed as code—uniformly across the mesh—are made available to
each data product, which then can evaluate and apply them at the right time.

Data mesh architecture introduces a few more logical components to manage data
product policies as code:

Data product sidecar
A sidecar is a process that implements the policy execution and other aspects of
data products that need to be standardized across the mesh. It is provided by the
platform. It deploys and runs with a data product as one unit.

Data product computational container
A way for the platform to encapsulate the execution policies as one deployable
unit with the data product. For brevity I sometimes call this a data container.
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Control port
The control port provides a set of standard interfaces to manage and control the
data products’ policies.

Figure 9-13 shows these logical components. Ideally, the platform supplies and stand‐
ardizes the domain-agnostic components such as the sidecar, control port implemen‐
tation, and input and output ports.

Figure 9-13. The logical architectural components of embedded computational policies

Note that each of these logical components can be implemented as one or many
physical components. For example, a sidecar is an extensible and logical placeholder
for different kinds of policy enforcement agents.

Data Product Sidecar
A sidecar is a logical component that decorates each data product’s runtime context
and executes cross-cutting concerns that are expected to be standardized across the
mesh.

A sidecar is often implemented as a separate process to create a dynamic and loose
coupling with a data product. It is often injected at deployment time into the data
product container. Over time we may have more than one sidecar or extend the
sidecar with additional cross-functional capabilities. Nevertheless, its design must be
extensible to include more policies over time.
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Let’s look at a few ways that a sidecar can be extended to support consistency across
data products.

Policy execution
One of the responsibilities of the data product sidecar is executing policies. While
data mesh governance embraces diversity of data products across many dimensions
such as data modeling, it does require certain policies to be applied consistently to all
data products.

In a distributed architecture like data mesh, the objective is to remove any accidental
points of contention and bottlenecks. For this reason, it is best to configure and
execute policies within the localized execution context of each data product, inde‐
pendently, as opposed to a centralized gateway.

A common strategy to achieve this is injecting the policy execution into the local
context. In this case, the data product sidecar accompanying each data product can
evaluate and apply access control policies when an output port is accessed or apply
encryption when a data product writes new data.

This strategy has been implemented in the operational systems architecture with
a sidecar pattern. The sidecar is a process that augments the application behavior
with cross-cutting concerns. For example, this pattern is used by a service mesh to
implement routing, security, resilience, and other policies on a service’s inbound and
outbound calls.

Standardized protocols and interfaces
An important objective of governance is to create an interoperable ecosystem of
data products. Data product interfaces that surface their data and behavior—input
data ports, discovery port, output data ports, and control port—are fundamental to
interoperability across data products.

The sidecar, placed in the flow of all inbound and outbound communications of
data products, can offer standardized APIs. For example, the sidecar can provide
a standardized API for exposing SLO metrics from each data product. The data
product’s implementation uses the standard implementation of these APIs to expose
their unique content.

Data Product Computational Container
As you can see in Figure 9-13, quite a few structural components are bundled
together to create an autonomously usable data product: the sidecar, the policy
configurations, the data product transformation code, the data product data, its data
sharing interfaces, etc.
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Another element to make the federated governance effective is the container that
wraps all the structural elements of a data product as an architecture quantum.

The data product experience plane consistently provides the implementation of the
container for all data products.

Control Port
Computational governance introduces a new interface on all data products, the
control port. The control port exposes a set of APIs to (1) configure policies for
each data product, and (2) execute a small set of highly privileged operations to meet
governance requirements.

Configure policies
The control port is the interface to configure policies that must be executed within
the context of a data product. These policies can be authored and controlled locally,
by the data product itself, or centrally by the mesh experience plane.

For example, the policies around data anonymization are best authored locally by
declaring the data product’s PII attributes. The domain data product owners have
the most relevant information to know and configure if the data product has PII. In
contrast, the definition of roles and their access controls are often authored centrally
and enforced locally on each data product.

Both forms of policy authoring—locally configured or centrally configured—can coex‐
ist for a single data product.

The design of a control port must be extensible to support new types of policies as
they get introduced to the mesh.

Privileged operations
The governance function needs a way to execute a small set of highly privileged
operations on all data products, for example, an operation to execute GDPR’s right to
be forgotten—an individual’s right to erase all their data collected by an organization.

Imagine if in the Daff examples one of the listeners decides to erase all their infor‐
mation preserved by Daff; the global governance function needs to have a way to
flag this to all data products on the mesh. Control ports can expose a specific highly
privileged interface that implements the right to be forgotten for an individual.

The platform standardizes the control port for all data products.
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Recap
This chapter offered a logical architecture that made data mesh principles more
concrete and closer to implementation.

At the time of writing various aspects of the logical architecture are in different stages
of maturity—some are implemented and tested, and some are more experimental.
Table 9-1 clarifies their state of maturity.

The components are deemed to be logical, and their physical implementation may
take different forms. For example, the idea of policy execution through a sidecar
might physically be implemented as an accompanying process (service) to the data
quantum (dynamically coupled) or it can be implemented as a shared library (stati‐
cally coupled). My hope is that the technology evolves to the point that we can get the
logical architecture and its physical implementation as close to each other as possible.

Table 9-1 summarizes the logical architectural components I introduced in this
chapter.

Table 9-1. Data mesh logical architectural components and their maturity

Architectural component Description
Domain Systems, data products, and a cross-functional team aligned to serve a business domain

function and outcomes and share its analytical and operational capabilities with the
wider business and customers.
This is a well-established concept.

Domain analytical data interfaces
(see “Analytical Data Interface
Design” on page 149)

Standardized interfaces that discover, access, and share domain-oriented data products.
At the time of writing, the implementation of these APIs is custom or platform specific.
The proprietary platforms need to offer open interfaces to make data sharing more
convenient and interoperable with other hosting platforms.

Domain operational interfaces (see
“Operational Interface Design” on
page 148)

APIs and applications through which a business domain shares its transactional
capabilities and state with the wider organization.
This concept has mature implementations.
It is supported by de facto standards such as REST, GraphQL, gRPC, etc.

Data (product) quantum (see
“Data Product as an Architecture
Quantum” on page 151)

Data product implemented as an architecture quantum that encapsulates all the
structural components it needs to do its job—code, data, infrastructure specifications,
and policies.
It is referred to in architectural discussions. It is used interchangeably with data
products.
At the time of writing this is an experimental concept with custom implementations.

Data (product) container (see
“Data Product Computational
Container” on page 166)

A mechanism to bundle all the structural components of a data product, deployed and
run as a single unit with its sidecar.
At the time of writing this is an experimental concept with custom implementations.

Data product sidecar (see “Data
Product Sidecar” on page 165)

The accompanying process to the data product. It runs with the context of a data
product container and implements cross-functional and standardized behaviors such as
global policy execution.
At the time of writing this is an experimental concept with custom implementations.
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Architectural component Description
Input data port (see “Input data
ports” on page 159)

A data product’s mechanisms to continuously receive data from one or multiple
upstream sources.
At the time of writing this has custom implementations with existing event streaming and
pipeline management technologies.

Output data port (see “Output
data ports” on page 159)

A data product’s standardized APIs to continuously share data.
At the time of writing this has vendor-specific custom implementations.
A mature implementation of the concept requires open data sharing standards with
support for multiple modes of access to temporal data.

Discovery and observability APIs
(see “Data Discovery and
Observability APIs” on page 159)

A data product’s standard APIs to provide discoverability information—to find, address,
learn, and explore a data product—and observability information such as lineage,
metrics, logs, etc.
At the time of writing custom implementations of these APIs have been built.
A mature implementation requires open standards for discoverability and observability
information modeling and sharing. Some standardsa are currently under development.

Control port (see “Control Port” on
page 167)

A data product’s standard APIs to configure policies or perform highly privileged
governance operations.
At the time of writing this concept is experimental.

Platform plane (see “A Platform
Plane” on page 161)

A group of self-serve platform capabilities with high functional cohesion surfaced
through APIs.
This is a general concept and well established.

Data infrastructure utility plane
(see “Data Infrastructure (Utility)
Plane” on page 162)

Platform plane providing low-level infrastructure resource management—compute,
storage, identity, etc.
At the time of writing the services that constitute the infrastructure plane are mature and
provided by many vendors with support for automated provisioning.

Data product experience plane
(see “Data Product Experience
Plane” on page 162)

Platform plan providing operations on a data product.
At the time of writing, custom implementation of services constituting a data product
experience plane has been implemented. No reference implementation publicly exists.

Mesh experience plane (see “Mesh
Experience Plane” on page 162)

Platform plane providing operations on the mesh of connected data products.
At the time of writing, custom implementations of some of the services constituting a
mesh experience plane, such as discovery and search services, have been implemented. No
reference implementation publicly exists.

a OpenLineage is an example of an observability open standard that data products can adopt.
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CHAPTER 10

The Multiplane Data Platform Architecture

The real truth of existence is sealed, until after many twists and turns of the road.
—Rumi

The previous chapter introduced the multiplane data platform, a high-level compo‐
nent of data mesh architecture. Many questions are yet to be answered in the gap
between this high-level architecture and the actual implementation. What exact tech‐
nologies to buy or build? How to evaluate these technologies? How to integrate them?

This chapter walks you through a framework that you can apply to answer these
questions, in the context of your organization and available technology stack. It
provides examples of what constitutes a platform to help you kickstart your creative
journey. It shows you the road to follow with all its twists and turns to discover what
is truthful for your organization.

By now you have some familiarity with the concept of the data mesh platform and
have a language to describe it.

Chapter 4 introduced the platform as:

A collection of interoperable domain-agnostic services, tools, and APIs that enable
cross-functional domain teams to produce and consume data products with lowered
cognitive load and with autonomy.

Chapter 9 proposed a multiplane platform to distinguish between different classes
of platform services based on their scope of operation without imposing a strict
layering.

The three planes of the platform include:
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Data infrastructure (utility) plane
Atomic services to provision and manage physical resources such as storage,
pipeline orchestration, compute, etc.

Data product experience plane
Higher-level abstraction services that operate directly with a data product and
enable data product producers and consumers to create, access, and secure a data
product, among other operations that run on a data product.

Mesh experience plane
Services that operate on a mesh of interconnected data products such as search‐
ing for data products and observing the data lineage across them.

All of these planes can be directly accessed by the consumers of the platform: data
product developers, consumers, owners, the governance function, etc.

Figure 10-1 illustrates the platform planes and their users’ personas.

Figure 10-1. Multiplane self-serve platform and platform users
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The mesh experience plane optimizes the experience of people who need to operate,
govern, and query the mesh as a whole. For example, members of the governance
team and data product owners interact with the services in this plane to evaluate
the current state of policies, monitor the general operational health of the mesh,
and search for existing data products. It is also used by data product consumers and
providers in scenarios where they need to work with a collection of data products
such as searching, browsing, or debugging through lineage and logs.

Data product consumers and providers mainly interact with the data product expe‐
rience plane to discover, learn, understand, consume, build, and maintain data
products. The data product experience plane is optimized for the delivery and con‐
sumption of data products as the unit of value exchanged between the consumers and
providers. To a lesser degree they may use services in the infrastructure plane, often
in cases where the data product experience plane doesn’t yet provide the services they
need. For example, a particular data product may want to expose its output port via a
graph query language, but the data product experience plan does not support this as
a packaged output port implementation, yet. In this case, the data product developers
may use the infrastructure services directly to provision a graph query engine and
then hook it up to their output port implementation. Ideally their graph query output
port implementation gets harvested later and built back into the standard output
ports supported by the platform.

Data mesh planes do not impose a strict layering in accessing their services. The data
product experience plane provides a set of operations on a data product and manages
the complexity of provisioning its underlying infrastructure. But it does not intend to
strictly stop platform users from accessing the infrastructure plane. It’s just going to
make it so easy to work with data products that domain teams would not have any
incentive to directly work with the infrastructure services.

While the data product experience plane optimizes for the user experience, the
data infrastructure utility plane makes sure that the resources’ performance and
utilizations are optimized. The utility plane optimizes to get the best out of what
the underlying infrastructure providers offer around storage, compute, orchestration,
etc. It adapts the data product experience plane to the underlying physical hosting
environment. It is organized around the underlying resources and its users, the
majority of which are the platform engineers who are building the other planes. Many
of the data infrastructure plane services are shared with the operational systems.

In this chapter I will take you further along the design of your data mesh platform
capabilities with a user-experience-centric approach. I will go through a few key
journeys of data product developers and consumers and discover what interfaces the
platform exposes to streamline the journeys.
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Design a Platform Driven by User Journeys
The ultimate purpose of the platform is to serve the cross-functional domain teams
so they can deliver or consume data products. Hence, the best way to begin the
design of the platform is to understand the main journeys of your platform users and
evaluate how you can make it easy for them to complete their journeys successfully
using the platform.

There are a few main high-level personas in the data mesh ecosystem:

Data product developers
This persona covers the role of a data product developer, considering a wide
spectrum of skill sets—from generalist developers with general programming
skills to specialist data engineers who are well-versed in the existing analytical
data processing technologies.

Data product consumers
This persona covers multiple roles that have one thing in common: they need
access and use data to do their job. Their job might be:

• Training or inferring ML models, as data scientists•
• Developing reports and dashboards, as data analysts•
• Developing new data products that consume data from existing ones, as data•

product developers
• Building data-driven services and applications in the operational domain, as•

an application developer
This is quite a wide range, and platform interfaces and services can vary depend‐
ing on the exact role.

Data product owners
Data product owners are responsible for delivering and evangelizing successful
data products for their specific domains. The success of the data products
depends on their adoption and value delivery, as well as conformance to the
wider policies of the mesh and their interoperability with other data products.
They use the platform to keep the pulse of their data products.

Data governance members
Since data governance is founded on a federated structure, there is no one
specific data governance role. Nonetheless, the members of the governance team
have a collective set of responsibilities to assure the optimal and secure operation
of the mesh as a whole. There are various roles within the governance group
such as subject matter experts on security and legal issues, as well as data product
owners with specific accountabilities. The platform facilitates their collective
journey as well as the individual roles.
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Data platform product owner
The data platform planes and their services are products whose users play all the
other roles mentioned earlier. The data platform product owner is responsible
for delivering the platform services as a product, with the best user experience.
Based on an understanding of the platform users’ needs and constraints, the data
platform product owner prioritizes the services that the platform offers.

Data platform developer
The platform developers build and operate the data platform as well as use
it. Data platform developers who work on the data product experience plane
services are users of the utility plane services. Hence, their skillset and journey
are important to the design of the utility plane services.

In this chapter I demonstrate how to approach the platform’s design using two
example roles: a data product developer as well as a data scientist as a data product
consumer.

Data Product Developer Journey
One of the key journeys of a data product developer is to create and operate a
data product. This is an end-to-end and long-term responsibility that embraces the
continuous delivery principle of “everyone is responsible.” Building and operating a
data product is not someone else’s problem.

Figure 10-2 shows the high-level phases of the data product creation journey. These
stages are iterative with continuous feedback loops. For simplicity of demonstration, I
have drawn the journey as a linear succession of stages. The journey begins with the
activities around the inception of a data product such as ideation and exploration of
sources. It continues to the actual build and delivery of the data product, followed by
monitoring it, continuously evolving it, and optionally retiring it.

A data product development journey interacts with other journeys. In the case of
a source-aligned data product that consumes data from an operational system, the
data product developers work closely with the source application developers. They
co-design and implement how the application will share its operational data as an
input to the data product. Note that these people belong to the same domain team.
For example, development of the play events data product requires close collabora‐
tion with the player application that generates the raw data.
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Figure 10-2. High-level example of the data product development journey

Similarly, if the data product is built for a known analytical application, in the case of
a consumer-aligned data product, there is a collaboration that happens early between
the data product developers and the analytical application developers. Data product
developers need to understand the goals of the analytical application and its needs
in terms of data fields and the guarantees that the data product must support. For
example at Daff, an ML-powered playlist recommendation application requires data
from the music profiles data product. The music profiles data product developers
need to work closely with the playlist recommendation application team to align on
the expected classifications of the profile.

Let’s look at the high-level stages of data product development and how the platform
interfaces are designed to support them (Figure 10-3).

The notation and phrasing of the interfaces are not representative
of a final implementation. The imperative language is chosen to
focus on the functionality, while in reality the declarative forms of
APIs are more desirable. For example, the /deploy interface is very
likely implemented as /deployments, the declarative resources for
the deployed data products.
The interfaces are exemplary and demonstrate the semantics of the
operation and not the actual syntax or mechanism of the interface,
e.g., CMD, UI, API, etc.
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Figure 10-3. High-level example of the data product development journey using the
platform

Incept, Explore, Bootstrap, and Source
Data products often come to exist because we discover one or many potential analyt‐
ical use cases that need their data. While data products, particularly source-aligned
ones, have many diverse use cases, some beyond our imagination today, we still need
to start the inception—the creation—of them from a real use case that demonstrates
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the value of the data product in a real-world context. Consumer-aligned data prod‐
ucts directly serve one or multiple specific use cases. The inception of a consumer-
aligned data product always involves direct collaboration with its consumers.

During the inception of a data product, the developer is in an exploratory phase
looking for potential sources for the data product. The source can be discovered as
an upstream data product, an external system (to the organization), or an operational
system (in the organization). During the exploration, the developer may study the
upstream source’s discovery information, to evaluate the source’s suitability, data
guarantees, documentation, data profiling, existing users, etc.

Once potential sources are nominated, the developer can quickly bootstrap a hello
world data product. The platform provisions the necessary infrastructure. It enables
the data product developer to connect to the sources and consume data—either in the
form of synthesized data, obfuscated, or the actual data. At this point the developer
has all the necessary resources to start experimenting with the source data and the
data product’s transformation logic.

These steps constitute the exploratory steps of incepting a data product. Rapid
discovery, access to source output data, quick scaffolding of a data product, and
provisioning of infrastructure are all the necessary pieces of the inception and boot‐
strapping phase.

For example, the playlist team plans to generate new playlists for holiday seasons
across different countries. They need data about regional holidays and their senti‐
ment, as well as labeled music profiles that associate different tracks with their
relevant holiday. They start by searching for existing data products on the mesh with
similar information. They find a few sources for music profiling and then connect
to those data products and start playing with the data to assess their completeness
and relevance. They quickly create a simple holiday playlist data product to see
what playlists they can generate from the simplest implementation of music holiday
profiling.

Table 10-1 provides a summary of platform APIs used during this phase.
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Table 10-1. Example interfaces provided by the platform planes in support of a data product
inception

Development
phase

Platform
Plane

Platform
interface

Platform interface description

Incept |
Explore

Mesh
experience

/search Search the mesh of existing data products to find suitable sources.
The search can be based on various parameters such as source operational
systems, domains, and types of data.

Mesh
experience

/knowledge-
graph

Browse the mesh of related data products’ semantic models. Traverse their
semantic relationship to identify the desired sources of data.
Example: the playlist team can browse the semantic relationship between the
holiday-related music profilings they have found.

Mesh
experience

/lineage Traverse the lineage of input-output data between different data products on
the mesh to identify the desired sources based on the origin of the data and
the transformations the data has gone through.
Example: the playlist team can look at how the existing music holiday profiling
is created and trace back what its sources are and what transformation has led
to the classifications. This is to evaluate the suitability of the existing music
holiday profiling.

Bootstrap |
Source

Data
product
experience

/{dp}/
discover

Once a source is identified, access all the data product discoverability
information such as documentation, data model, available output ports, etc.

Data
product
experience

/{dp}/
observe

Once a source is identified, access the data product’s guarantees and metrics
—real-time—such as how often the data is being released, the last release
date, data quality metrics, etc.
Example: Once the playlist team finds a promising holiday music profiling, they
need to evaluate how often this data is refreshed and what its completeness
compared to all the music available on the platform is. This assessment gives
them more trust in the data.

Data
product
experience

/init To get started with experimenting with the source data, this API bootstraps a
barebones data product with enough of the infrastructure available to connect
to the sources, access their data, run transformation on the data, and serve the
output in a single access mode for verification.
The scaffolding of a data product allocates the continuous delivery pipeline,
early environments, provisioning of data processing clusters, and accounts to
run and access infrastructure resources for the data product. This marks the
beginning of the data product life cycle.

Mesh
experience

/register During the initialization of a new data product, it’s automatically registered
with the mesh. It’s given a unique global identifier and address and makes the
data product visible to the mesh and the governance process.

Data
product
experience

/connect Once the source is discovered, the data product gets access to the source by
connecting to it. This step validates the access control policies governing the
source.
This might trigger a request for permission to get access to the data product.
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Development
phase

Platform
Plane

Platform
interface

Platform interface description

Bootstrap |
Source
(continued)

Data
product
experience

/{dp}/
{output}/
query
/{dp}/
{output}/
subscribe

Read data from a particular output port of the source data product, either in a
pull-based querying model or subscribing to changes.

Build, Test, Deploy, and Run
Data product developers have an end-to-end responsibility of building, testing,
deploying, and operating their data products. The stage I have simply called “build,
test, deploy, and run” is a continuous and iterative series of activities that data product
developers perform to deliver all the necessary components of a successful data
product. This data product is autonomously discoverable, understandable, trustworthy,
addressable, interoperable and composable, secure, natively accessible, and valuable on
its own (see “Baseline Usability Attributes of a Data Product” on page 33).

Table 10-2 lists the high-level interfaces to deliver a data product.

Table 10-2. Example interfaces provided by the platform planes in support of data product
development

Development
phase

Platform
plane

Platform
interface

Platform interface description

Build Data
product
experience

/build Compile, validate, and compose all the components of a data product into
a deployable artifact that can be used to run the data product in various
deployment environments.
See Table 10-3 for the data infrastructure plane interfaces used during this phase.

Test Data
product
experience

/test Test various aspects of a data product. Test the functionality of data
transformation, the integrity of the output data, expectations of the data
versioning and upgrade process, expectations of the data profile (its expected
statistical characteristics), test bias, etc.
Testing capabilities are offered in different deployment environments.

Deploy Data
product
experience

/deploy Deploy the built revision of a data product to an environment, including
the developer’s local machine, a development sandbox on the target hosting
environment (e.g., a specific cloud provider), and pre-production or production
environments.

Run Data
product
experience

/start
/stop

Run or stop running the data product instance in a particular environment.

Build/Test/
Deploy/Run

Data
product
experience

/local-
policies

One of the main components of a data product is the policies that govern its data
and function. Policies include encryption, access, retention, locality, privacy, etc.
The platform facilitates configuration and authoring of these policies locally,
during the development of a data product, their validation during test, and their
execution during access to data.
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1 The data infrastructure plane, for instance, may offer Apache Spark or Apache Beam tasks orchestrated with
Prefect or Serverless functions.

Development
phase

Platform
plane

Platform
interface

Platform interface description

Build/Test/
Deploy/Run

Mesh
experience

/global-
policies

In many organizations policies that govern a data product are authored by the
global (federated) governance team.
Hence, the platform enables authoring of the global policies and application of
these policies by all data products.

Let’s look more closely at what is involved at the data infrastructure plane.

Building a data product has many parts to it. A data product developer must con‐
figure or code all of these parts to implement an autonomous data product. The
platform is a key enabler in lowering the cost and effort required to code or configure
each of these components.

Figure 10-4 maps the build and execution of different components of a data product
to the lower-level platform interfaces, infrastructure plane APIs. A data product devel‐
oper, in the majority of the cases, simply interacts with the data product experience
plane: building, deploying, and testing a single data quantum. The data product
experience plane delegates the implementation of the data product components to the
data infrastructure plane.

The developers must understand, code, and configure different aspects and compo‐
nents of a data product given the technologies that the data infrastructure plane
offers. For example, the choice of how to code the transformation aspect of a data
product depends on what computation engines the data infrastructure plane sup‐
ports.1 Nevertheless, data product developers focus on coding the transformation,
using the technology made available to them, and leave it to the data product experi‐
ence plane to manage the build, deployment, and execution of transformation along
with all the other components. In this process, the data product experience plane
delegates the details of transformation execution to the data infrastructure plane.
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Figure 10-4. Example of data infrastructure plane interfaces to support data product
delivery

Table 10-3 lists some of the data infrastructure plane capabilities utilized during the
development of a data product.
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Table 10-3. Example of data infrastructure plane interfaces that support data product
experience plane APIs

Platform interface Platform interface description
/input-ports Provides different mechanisms for consuming data according to the design of data products, e.g., event

streaming input, remote database queries, file read, etc. It triggers executing the transformation when
data is available.
The input port mechanisms keep track of consumption progress as new data becomes available.

/output-ports Provides different mechanisms for serving data, according to the modes of access data product offers,
e.g., streams, files, tables, etc.

/transformations Provides different execution mechanisms for running all the computation necessary to transform data.
/containers Managing the life cycle of data products and all its required infrastructure resources, as an autonomous

unit.
/controls Provides a wide range of technologies to enable configuration and execution of diverse and evolving

policies such as access control, encryption, privacy, retention, locality, as code.
/storage Input ports, output ports, and transformation all require access to permanent and temporary storage

for data and their metadata (SLOs, schemas, etc.) The platform must supply access to different types of
storage (blob, relational, graph, time series, etc.) and all the operational capabilities such as failover,
recovery, backup, and restore.

/models The mechanisms to describe, share, and link semantic and syntax schema models of the data.
/identities The mechanism to identify and address a data product uniquely on the mesh.

Maintain, Evolve, and Retire
Maintenance and evolution of a data product involves continuous change to the data
product: improving its transformation logic, evolving its data model, supporting
new modes of access to its data, and enrichment of its policies. The changes to
data products result in continuous iterations of build, test, deploy, and run (“Build,
Test, Deploy, Run” on page 188), while maintaining an uninterrupted processing and
sharing of data.

The platform must reduce the overhead of how a data product is maintained to what
is to be maintained. For example, if the result of a new build is a change to the
semantic and schema, the data product developer simply focuses on changes to the
data model, and the transformation of data based on the new model. The complexity
of how different versions of schemas (semantic and syntax) are managed, associated
with the data, and accessed by the consumer is managed by the platform.

In some cases, the evolution of a data product has no impact on its underlying infra‐
structure resources. For example, a bug fix to the transformation code simply requires
rebuilding and redeploying the data product and fixing the generated data. In other
cases, the evolution impacts the underlying resources. For example, migrating a data
product to a new environment in the case of switching storage vendors requires
reallocating the storage resources and migrating the data product’s underlying data.
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Monitoring the operational health of each data product, and the mesh as a whole,
is another key capability that the platform offers during this phase. The operational
excellence of the mesh depends on monitoring various aspects of each data product:
monitoring its performance, reliability, SLOs, effectiveness of its computational pol‐
icies, and operational cost based on resource usage. In addition to monitoring indi‐
vidual data products, the mesh experience plane must gather insights and monitor
the state of the mesh as a whole. For example, detect and alarm when master data
products are detected—data products that aggregate data from too many sources and
become a bottleneck as they are used by many.

During the lifetime of a data product, there will be times when mesh-level admin‐
istrative controls must be invoked. For example, the right to be forgotten can be
triggered through the mesh-level global controls, delegated to every single data pro‐
duct’s control interface, and implemented through the data eviction function of their
underlying storage.

Will a data product ever cease to exist? I can think of two scenarios that it would.
A data product can retire in the case of migration to a new data product or in the
case that all of the data records it has ever generated must be discarded and no new
record is ever going to be generated. In both cases the platform enables data product
developers to gracefully retire the data product so its downstream consumers can
either migrate to the new source over time or themselves retire. As long as someone
is using the past data, the data quantum continues to exist, though it may not execute
any further transformation nor produce any new data. A dormant data product will
continue to serve its old data and enforce its policies, while a fully retired data
product is simply extinct.

Table 10-4 shows a few of the platform interfaces to support the maintenance, evolu‐
tion, and retirement phases of data product development.

Table 10-4. Example of data platform interfaces to support data product maintenance

Platform plane Platform
interface

Platform interface description

Data product
experience

/{dp}/status Checking the status of a data product.

Data product
experience

/{dp}/logs
/{dp}/traces
/{dp}/metrics

The mechanism for a data product to emit its runtime observability information
such as logs, traces, and metrics, according to the design of the data quantum’s
observability (“Observability Design” on page 264). The mesh layer monitoring
services utilize the data provided by these mechanisms.

Data product
experience

/{dp}/accesses The logs of all accesses to the data product.

Data product
experience plane

/{dp}/controls Ability to invoke high-privileged administrative controls such as right to be
forgotten on a particular data quantum.
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2 This example is inspired by the Discover Weekly feature of Spotify, which I personally look forward to every
Monday.

Platform plane Platform
interface

Platform interface description

Data product
experience

/{dp}/cost Tracking the operational cost of a data product. This can be calculated based on
the resource allocation and usage.

Data product
experience

/migrate Ability to migrate a data product to a new environment. Updating the data
product revision is simply a function of build and deploy.

Mesh experience /monitor Multiple monitoring abilities at the mesh level, logs, status, compliance, etc.
Mesh experience /notifications Notification and alerting in response to detected anomalies of the mesh.
Mesh experience /global-controls Ability to invoke high-privileged administrative controls such as right to be

forgotten on a collection of data products on the mesh.

Now let’s move our attention to the data consumer journey and see how platform
interfaces may evolve to support such a persona.

Data Product Consumer Journey
The  persona of a data consumer represents a wide range of users, with various skill
sets and responsibilities. In this section, I focus on an example data scientist persona
who is consuming existing data products to train an ML model and then is deploying
the ML model as a data product to make inferences and generate new data. For
example, Daff uses an ML model to produce a curated playlist every Monday for all
of its listeners to start their week. The ML recommendation model that generates the
Monday playlists is trained using data from existing data products such as listener
profiles, listener play events, their recent reactions to the songs they have liked or
haven’t, and the playlists of what they have listened to recently.2

Once the ML model is trained, it is deployed as a data product, monday playlists.

If you recall from Chapter 7 data mesh creates a tightly integrated operational and
analytical plane. It interconnects domain-oriented (micro)services and data products.
Despite a tight integration and feedback loop between the two planes, data mesh
continues to respect the differences of the responsibility and characteristics of each
plane, i.e., microservices respond to online requests or events to run the business, and
data products curtate, transform, and share temporal data for downstream analytical
usage such as training machine learning models or generating insights. Despite the
attempt in clarifying the boundary between the entities of the two planes, ML models
blur this boundary.

ML models can belong to either plane. For example, an ML model can be deployed
as a microservice to make inferences online as the end user makes requests. For
example, during the registration of a new listener, given the information provided by

Data Product Consumer Journey | 185

https://oreil.ly/4h8m4


the listener, a classifier ML model is called to augment the user’s information with
their profile classification. Alternatively, an ML model can be deployed as the trans‐
formation logic of a data product. For example, the playlist recommender ML model
is deployed as a data product that makes inferences every Monday and generates
new playlists. This data then can be fed into the operational service that displays the
playlists to the listener. Figure 10-5 shows this example.

Figure 10-5. Example of a bimodal deployment of ML models
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3 This process is also known as MLOps; however, I use the CD4ML notation since it overlays and integrates
closely with continuous delivery of software and data products.

In this section, I explore the data scientist’s journey for an ML model that gets
deployed as a data product to demonstrate the overlap of this journey with data mesh
platform capabilities. Figure 10-6 demonstrates a high-level journey to continuously
deliver an ML model as a data product. This value stream follows the practice of
continuous delivery for machine learning (CD4ML) to continuously hypothesize, train,
deploy, monitor, and improve the model in rapid feedback loops with a repeatable
process.3

Figure 10-6. Example ML model development journey
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4 Lack of native versioning of analytical data, today, demands usage of tools such as DVC to version data used
to train ML models.

From the data platform perspective, this journey is very similar to the “Data Product
Developer Journey” on page 175 we explored earlier. There are some differences that
I call out next.

Incept, Explore, Bootstrap, Source
In this example, ML model developers start their journey with the inception of the
data product that will ultimately embed in their model. The inception of this data
product includes the formulation of the hypothesis for an intelligent action or deci‐
sion based on the existing data. For example, is it possible to curate and recommend a
playlist that is played and replayed (loved) by many listeners?

To start the exploration to validate the hypothesis, the ML model developers explore
and search existing data products and evaluate the sources using their discoverability
APIs as well as through sampling output ports data. During this phase, the platform
interfaces remain the same as what I presented earlier. The main difference here is
perhaps the type of discoverability information the data scientists care about. They
must evaluate whether there is bias in the data and fairness of the data. This can be
evaluated by sampling and profiling the source data product output port.

Build, Test, Deploy, Run
The journey continues to build the model and train it using the upstream data
product output ports. During the training, the model developer may decide that
the training dataset requires change, modifying the upstream data product data into
features. For example, the training features may only include a subset of playlists
information joined with song profiles. In this case, the data transformation pipeline
to generate features becomes itself a data product. For example, monday playlist
features becomes a data product that is developed similarly to any other one.

During this phase the model developers need to keep track of the data that results in a
particular revision of the model. The versioning of the source (training and test) data
can use the processing time parameter exposed by all data products as the revision of
the data—a timestamp that is unique to each state of data and indicates when a data
was processed and published. This removes the need to keep a copy of the data4 for
future reuse and repeatability of the model, as the source data product always allows
retrieving past data. Chapter 12 will elaborate on this.
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5 For example, Python models are serialized into a pickle binary file format.

The process of model training and tracking can be handled by an ML platform—a
platform of technologies and tools that satisfy the unique needs of ML model training
pipelines. These services work closely and integrate with the data platform.

During deployment, the model needs to be packaged into a format that can run as
the transformation code of the monday playlists data product.5 During the model
run, the infrastructure plane transformation engine can handle the unique needs of
executing ML models such as execution on targeted hardware—GPUs or TPUs.

Maintain, Evolve, and Retire
Similar to other data products, developers continue to monitor the performance of
the model and make sure the output data, the playlists, is created as expected.

One of the unique needs of model monitoring is observing the efficacy of the models
and monitoring actions that the listeners take. For example, do new revisions of the
model result in an increase in duration of listening to the playlist, more replays,
and more listeners? Monitoring such parameters may utilize the operational plane
capability of monitoring metrics. In this case, the player application can provide
these metrics.

Recap
If you take away one thing from this chapter, I wish it to be this: there is no single
entity such as a platform. There are APIs, services, SDKs, and libraries that each
satisfy a step in the journey of the platform users. A platform user journey, whether
the user is a data product developer or a consumer, is never isolated to the data mesh
platform services. They often cross boundaries with APIs that serve the operational
systems—e.g., using streaming capabilities to consume data from a microservice—or
cross boundaries with ML model training capabilities such as experiment tracking or
utilization of GPUs. Hence, view your platform as a set of well-integrated services that
are there to satisfy a seamless experience for their users.

The second point I’d like you to take away is to respect the separation of planes so that
you can choose to optimize both for the human experience and machine efficiency.
For example, use the data product experience plane to optimize the user experience
at the logical level of interacting with a single unit of a data quantum. Create a
separate data infrastructure plane to optimize for the machine, e.g., separation of
compute from storage to handle independent scaling of each or co-locality of all data
to reduce data movement. The lower plane optimization decisions should not impair
the developer experience, and vice versa.
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I’d like to leave you with one last point in the first step in your path to creating
a data mesh platform: start with discovering and designing an optimized journey
for roles such as data product developer and data product consumer, with minimal
friction and maximum delight and engagement. Once you have done that, feel free to
continue your search to find the right tools for various stages of their journey.
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1 Affordances are defined by Don Norman in his book The Design of Everyday Things.

PART IV

How to Design the Data Product
Architecture

The data product is a central concept to data mesh. Architecturally, it is designed as
an architecture quantum and called a data quantum. A data quantum encapsulates
and implements all the necessary behavior and structural components to process and
share data as a product (Chapter 3). It builds and runs with autonomy yet connects to
other data quanta on the mesh. Interconnection of data quanta creates the symmetric
and scale-out architecture of data mesh.

All data products share a set of common properties; e.g., they consume data from
upstream sources, transform data, serve data, govern data, etc. This part of the book
discusses an opinionated way of designing each of these properties.

I have organized this part of the book around the individual affordances1 of a data
product—the relationship between properties of a data product and how people (or
systems) can interact with them. For example, how data mesh users discover, read, or
manage the life cycle of data products, directly interacting with one.

Chapter 11, “Design a Data Product by Affordances”, summarizes the approach
to the design of a data product. Chapter 12, “Design Consuming, Transforming,
and Serving Data”, discusses how data products afford consuming, transforming,
and serving data for a diverse set of users—programs and people. It discusses a set
of necessary design constraints to make a distributed system of data sharing work.



Chapter 13, “Design Discovering, Understanding, and Composing Data”, discusses
how a data product affords its users to discover, understand, and trust it. It introduces
how a data product affords data composability so that data users can create new
types of aggregated data in a decentralized fashion. Chapter 14, “Design Managing,
Governing, and Observing Data”, touches on the remaining properties of a data
product in how it affords data users to govern it, observe it, and manage its life cycle.

The objective of Part IV is to help you identify design techniques that are compatible
with the vision of data mesh and separate them from those that are not. It is not
attempting to be a handbook of how to implement a data product. The discussion of
each affordance will cover what it is, why it is important, and what the characteristics
of a data mesh approach to it are.

Similar to Part III, the discussions here will stay technology agnostic, though the
design characteristics I introduce for each affordance will guide you in choosing a
technology that is compatible with data mesh. For example, the principle of dump
pipes and smart filters, equivalent to dumb pipes and smart endpoints for data prod‐
ucts, will lead you to choose a technology that does not impose data processing
pipelines to control the flow of data between data products.

First, let’s look at the overall approach to the design of a data product as an architec‐
ture quantum.
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CHAPTER 11

Design a Data Product by Affordances

The misconception which has haunted philosophic literature throughout the centuries is the
notion of “independent existence.” There is no such mode of existence; every entity is to be
understood in terms of the way it is interwoven with the rest of the universe.

—Alfred North Whitehead

The design of the data product as an architecture quantum (“Data Product as an
Architecture Quantum” on page 151) is arguably the most important aspect of the
data mesh architecture. It is an element of architecture that is unique to data mesh. It
builds upon prior approaches and learnings and yet departs from them.

In this part of the book, I use the shorthand of data quantum when the focus of the
conversation is on the design of a data product in the context of architecture, and I
use that interchangeably with data product.

As a distributed scale-out architecture, data mesh designs its data products as self-
contained, autonomous, and coequal nodes, data quantum, on the mesh. Each data
product is designed to be self-sufficient and affords its users and developers with all
the capabilities they need to do their job: discover them, understand them, use them,
build them, govern them, and debug them. That is why I have dedicated a part of the
book on how to approach the design of a self-sufficient data product.

Fundamentals of Software Architecture defines the constituents of architecture as:

Structure
The components and their interfaces, interactions, and integrations

Characteristics
Abilities such as extensibility, reliability, etc.

Decisions
Hard-and-fast rules that govern the design
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Principles
Guidelines that influence decisions

In addition to these, I will introduce and focus on another element: affordances—the
relationship between interfaces of data products and how people (or systems) can
interact with them, for example, how a data product affords its users (programs) to
connect to it, subscribe to its outputs, and continuously receive data from it. Another
example is how data users—people or programs—can discover a data product, under‐
stand it, and explore its data.

I call this approach to the design of data product architecture design by affordances.

Reading through this chapter guides you through a way of designing a data product
architecture that is compatible with data mesh thinking. My hope is that you take
this approach and apply it to the design of data products, beyond the aspects I
introduce in this part of the book. This is a way of thinking and a method to model
an architecture you can take and contextualize to your unique situation.

I will show you the ropes, and it’s you who will raise the sails and navigate the waters.

Data Product Affordances
In his book The Design of Everyday Things, Don Norman, the father of cognitive engi‐
neering, calls out affordances as one of the five fundamental principles of interactions.
He describes:

The term affordance refers to the relationship between a physical object and a person
(or for that matter, any interacting agent, whether animal or human, or even machines
and robots).
An affordance is a relationship between the properties of an object and the capabilities
of the agent that determine just how the object could possibly be used. A chair affords
(“is for”) support and, therefore, affords sitting. Most chairs can also be carried by a
single person (they afford lifting), but some can only be lifted by a strong person or by
a team of people. If young or relatively weak people cannot lift a chair, then for these
people, the chair does not have that affordance, it does not afford lifting.
The presence of an affordance is jointly determined by the qualities of the object and
the abilities of the agent that is interacting. This relational definition of affordance
gives considerable difficulty to many people. We are used to thinking that properties
are associated with objects. But affordance is not a property. An affordance is a
relationship. Whether an affordance exists depends upon the properties of both the
object and the agent.

Why does this matter in the design of data product interfaces and capabilities?
It is because for each of the data product properties, e.g., serve bitemporal data
(“Bitemporal data” on page 208), there is an assumption made about who or what
will be interacting with the property and what they are capable of, e.g., agents that
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are time-aware. These assumptions and constraints defined by the affordance are
necessary to get a decentralized system to work with integrity and reliability. You
are essentially designing a data product by inspecting the relationship of its proper‐
ties and capabilities with other agents in the data mesh ecosystem—data providers,
consumers, owners, governance, and other components such as services of the data
platform and other data products.

For the most part you can think of each of these affordances as properties of a data
product. But keep in mind who and what agents the property affords and who it
doesn’t.

Figure 11-1 lists affordances for a data product to autonomously transform and
serve meaningful,  understandable,  trustworthy  data  that  can  be  connected  to  other
data in the ecosystem. The word autonomously here means that its life cycle can
be managed independently without interruption to other data products. It has all
the structural components to do its job. Its dependencies to other data products or
platform services are through APIs with explicit contracts, creating loose coupling.

Figure 11-1. Data product affordances
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The phrase data product user in the following context refers to
all the interactive agents with a data product in a data product
ecosystem. That includes people such as data product developers,
data product owners, data product consumers, governance groups,
etc., as well as systems such as other data products and services of
the multiplane data platform.

Table 11-1 summarizes each of the affordances and gives you a reference to the
chapter that discusses them further.

Table 11-1. Data product affordances

Data product affordance Description
Serve Data (“Serve Data” on
page 201 in Chapter 12)

The data product shares immutable and bitemporal data, available through clearly defined
read-only interfaces supporting multiple modes of access. The data product affords a diverse
set of data product users to access data for training machine learning models, generating
reports, data analysis and exploration, and building data-intensive applications.
It does not afford transactional and operational applications that require updating or deleting
data to maintain their current state.

Consume Data (“Consume
Data” on page 217 in
Chapter 12)

The data product consumes data from upstream sources of a variety of types. The data product
affords consuming data from its collaborating operational application, other data products, or
external systems.
The data product only affords consuming data from the sources it identifies and configures
through the platform. It does not afford consuming data from sources it does not identify and
configure.

Transform Data (“Transform
Data” on page 226 in
Chapter 12)

The data product processes and transforms input data into new data that it then serves.
The data product affords data product developers with multiple modes of transformation
computation. The transformation can be program code, a machine learning model, or a
complex query running inference.
The transformation can generate new data or remodel or improve the quality of input data.

Discover | Understand |
Explore | Trust (“Discover,
Understand, Trust, and
Explore” on page 233 in
Chapter 13)

The data product serves APIs and information that affords data product users to discover,
explore, understand, and trust it.

Compose Data (“Compose
Data” on page 244 in
Chapter 13)

The data product affords data product users to compose, correlate, and join its data with other
data products.
The data quantum affords programmatic data composability by performing set (table or graph)
operations computationally.
The data product does not afford data composability to systems that demand a single and
tightly coupled data schema (e.g., SQL schema) shared across multiple data products.

Manage Life Cycle (“Manage
the Life Cycle” on page 255
in Chapter 14)

The data product affords data product users to manage its life cycle.
It provides a set of build-time and runtime configuration and code so that data product
developers can build, provision, and maintain it.
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Data product affordance Description
Observe | Debug | Audit
(“Observe, Debug, and
Audit” on page 262 in
Chapter 14)

The data product affords data product users to monitor its behavior, debug its issues, and audit
it.
It provides programmatic APIs to provide the necessary information such as data processing
logs, lineage, runtime metrics, and access logs.

Govern (“Govern Data” on
page 258 in Chapter 14)

The data product affords data users (governance group, data product developers) and the
mesh experience plane (administrative and policy controls) a set of APIs and computational
policies to self-govern its data.
It enables the build-time configuration of its governing policies and runtime execution of
them at the point of access to data, read or write. For example, it maintains data security by
controlling access to its data and protects privacy and confidentiality through encryption.

Data Product Architecture Characteristics
There are a common set of architecture characteristics that the design of all data
products share. You can assess the design of your data products against these charac‐
teristics to assure the data mesh objective of “getting value from data at scale” is met:

Design for change
Changing data and its model is a must-have design characteristic of a data
product. If you recall from earlier chapters, responding gracefully to change is an
objective of data mesh and hence a characteristic supported by all data products.

For example, the design decision to front various aspects of a data product
with APIs makes change more manageable. Another example, adding time as an
attribute of many aspects of a data product, the snapshots of data, the snapshots
of a data model, the time of SLOs, etc., makes handling the change of these
parameters easier. By default, all data product artifacts and data are versioned
using the notion of time.

Design for extension can be considered a subset of design for change character‐
istics. Data product capabilities evolve and mature over time. For example, on
day one a data product may only support a single mode of access through files,
and later evolve to support events and tables. This means data products have
an extensible design. Loosely coupled components such as collaborating sidecars
or agents improve extensibility. They can be extended with new capabilities and
injected into the data product at deploy or runtime, while statically linked or
shared libraries are less easily extensible as they require a rebuild of data products
to become available.

Design for scale
The design of the data product must result in a scale-out mesh. The mesh should
scale out while maintaining its agility to change and speed of access to data as
more data products are added, as the number of sources of data increases, and as
the diversity and the number of data users grow.
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1 Craig Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral Model,” SIGGRAPH ’87: Proceedings
of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Association for Computing
Machinery, pp. 25–34, CiteSeerX 10.1.1.103.7187. (1987)

Any centralized point of synchronization, coordination, or access can be detri‐
mental to this trade-off. That is why a data product is autonomous.

For example, the design decision to enforce access control or other policies in the
execution context of a data product—i.e., the sidecar—is a scale-out architectural
decision. Alternatively, using a central gateway in between data users and data
products to control access becomes a chokepoint over time.

Design for value
The design of a data product must put delivering value to its consumers with the
least amount of friction at its heart. While this might seem rather obvious and
perhaps redundant, the tale of software engineering is littered with clever designs
that are hardly helpful to delivering value.

The design of data product interfaces should focus on sharing easily understand‐
able, trustworthy, and secure data with users, with the least number of steps,
checks, and interventions. For example, while data bitemporality is necessary to
maintain and reason about integrity and trust in data in a distributed system,
many users don’t care about time in their day-to-day usage. So while the data
product maintains bitemporality internally, it may give shortcut APIs that reduce
the notion of time, assuming “now” or “latest” by default.

Design Influenced by the Simplicity of
Complex Adaptive Systems
An architecture like data mesh shares properties with complex adaptive systems. It is
made up of a network of autonomous self-organizing agents with dynamic intercon‐
nectivity. Taking inspiration from complex adaptive systems impacts the architectural
designs in two ways.

Emergent Behavior from Simple Local Rules
First, we can take inspiration from the fact that powerful group behaviors emerge
from a simple and small set of rules governing every agent, locally. For example, a
beautifully synchronized flock of thousands of starlings in the autumn sky emerges
from every starling bird following three simple rules:1 separation (don’t run into
close-by flockmates), alignment (follow the close-by lead flockmates), and cohesion
(move at a similar speed as the neighboring flockmates). The birds don’t need a global
orchestrator or knowledge of the whole.
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Similarly, powerful group behaviors emerge from the mesh by defining a small set of
simple characteristics and behavioral rules for each data product. For example, each
data product defines its input ports (where and how it consumes input data from
its immediate upstream sources) and defines its output ports (what data and how it
shares its output data). A data product can define its input ports to connect to other
upstream data products’ output ports.

The input ports and output ports define a data flow configuration, set locally by each
data product. From this local data flow rule emerges a mesh-level graph of lineage—
the graph of data flow across the mesh between all data products.

In this case, there is no centralized definition of the data flow graph or lineage. No
data product has knowledge of the whole mesh. There is no central orchestrator of
the pipelines, aware of a global configuration. This is different from the existing data
pipelines design, when a central orchestrator is working with a central repository of
all pipeline configurations.

Other examples of emergent mesh-level properties form simple and local data-
product-level rules. These include a global knowledge graph emergent from the local
definition of data product semantics and their relationship to their immediate nodes
and the mesh-level runtime performance based on local metrics and logs provided by
each data product with correlation identifiers.

The emergent properties and behaviors can be surfaced through the data platform’s
mesh experience plane services.

No Central Orchestrator
Data mesh, like complex adaptive systems, doesn’t need a central controlling architec‐
tural element. The flock of birds doesn’t have an orchestrator, but what it does have is
a set of biological standards defining how it detects speed, distance, and the leader.

Similarly, data mesh introduces a set of standards that each data product follows for
interoperability and cohesion of behavior. For example, in Chapter 10 I introduced
“global policies” as a service provided by the mesh experience plane. This service
can conveniently configure access control rules for each data product. However, the
interpretation and execution of the rules happen locally within the data product at
the right time—access read or write—without the intervention of the central access
control authority.

In some organizations the rule authoring itself is decentralized and delegated locally
to the data products. However, the platform embeds a standardized sidecar within
each data product for the uniform interpretation and execution of the rules.
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Recap
By now, I hope I have established a mindset and approach to the design of the core
element of the data mesh architecture, data product as an architecture quantum.

First, you are going to arrive at the right design by looking at the relationship
between a data product and other components and users of a mesh, the data product
affordances: serving data, consuming data, discovering data, governing data, auditing
data, etc.

Second, you are going to design a scale-out architecture, creating coequal data
products that can change without a fear of breaking others; they scale out without
imposing centralized bottlenecks and focus their design on the outcome of delivering
value.

Third, you are going to deploy the principles of complex adaptive systems where
possible: design simple and local rules and behaviors in each data product that can
collectively lead to the emergence of mesh-level knowledge and intelligence.

With this newly formed mindset, let’s go through the design of data product affordan‐
ces in the next few chapters.
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CHAPTER 12

Design Consuming, Transforming,
and Serving Data

A data product’s primary job is to consume data from upstream sources using its
input data ports, transform it, and serve the result as permanently accessible data via
its output data ports.

In this chapter, I go through the design characteristics of these three basic functions
that all data products implement: consume data (“Consume Data” on page 217),
transform data (“Transform Data” on page 226), and serve data (“Serve Data” on page
201).

Let’s begin with the one that has the most unique properties to a data mesh approach.

Serve Data
A data product serves domain-oriented data to a diverse set of analytical consumers.
It does so through its output data ports (interfaces), introduced in Chapter 9. The
output data ports have explicitly defined contracts and APIs.

This seemingly simple affordance of “serving domain-driven data” has interesting
properties when considering its relationship with the agents in the ecosystem and
their capabilities and needs.

Let’s look at the relationship between a data product and its data users.

The Needs of Data Users
Figure 12-1 shows the needs of data users and how a data product serves them.

201



Figure 12-1. Serve data properties to satisfy data users and their needs
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The requirements driven by data users impose a set of design considerations on how
data products serve their data:

Analytical data users have a diverse profile
Data users—clients accessing and reading data—fall on a wide spectrum of
personas and application types: people such as data analysts, data scientists, and
data-driven application developers; and systems such as reports, visualizations,
statistical models, and machine learning models, etc. Recalling Chapter 3, a data
product serves its data in a manner that feels native to such diverse personas. We
called this baseline usability characteristic of a data product natively accessible.

The design implication of this requirement is to serve data with multimodal
access—serving the same data semantic in different formats and modes of access.

Analytical data users need longitudinal data
The mesh maintains a longitudinal view of the global state of data, wholly, for
analytical use cases, and most importantly without an off-the-mesh data lake,
warehouse, or any external system to maintain the global state.

This continuously changing global state of the data is stored and maintained by
a connected graph of data products, and no other architectural elements. This is
the meaning of decentralization of architecture.

Insights, retrospective or futurespective, are most powerful when they account
for the passage of time. Only by having access to continuous data changes
over time can we formulate trends, make predictions, and discover correlations
between different events across multiple domains. Data mesh assumes time as an
ever-present parameter in both presenting and querying data.

The design implication to access longitudinal data, data that represents events
and state changes over time, is for each data quantum to serve bitemporal data.

Analytical data users need a consistent view of multiple domains at a point in time
The majority of the analytical use cases process data from multiple data products.
Such use cases correlate multiple data products at a consistent point in time. For
example, when Daff trains a machine learning model on 2021-07-01 to predict
subscriber growth for the next month, it does that based on the data from the last
three years, known and processed by multiple data products on 2021-07-01.

To support the repeatability of this version of the growth model, processed on
2021-07-21, the mesh maintains an unchangeable state of data across multiple
data products on 2021-07-21.

Providing point-in-time consistent data across multiple data products, combined
with versioning of data for repeatability, introduces multiple design considera‐
tions for serving data: bitemporality, immutability, and read-only access.
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Serve Data Design Properties
Let’s go a bit deeper in each of the properties we discovered earlier: multimodal,
immutable, bitemporal, and read-only access. These characteristics are integral to the
working of data mesh.

Multimodal data
The job of a data product is to serve the analytical data of a particular domain with a
specific and unique domain semantic. However, for a data product to serve its diverse
consumers natively, it must share the same domain semantic, in different syntaxes; the
semantic can be served as columnar files, as relational database tables, as events or in
other formats. The same semantic is served without compromising the experience of
the data consumer. People who write reports consume the data as relational tables.
People who train machine learning models consume data in columnar files, and
real-time app developers consume the events.

I personally find it helpful to visualize the nature of analytical data as the dimensions
of space and time(s). I use the space dimension to represent the different syntactic
materialization of the data, the formats of data. Any data product may present its data
with multiple formats, or in a multimodal form, for example:

• Semi-structured files, e.g., columnar files•
• Entity relationships, e.g., relational tables•
• Graph, e.g., property graph•
• Events•

When a data user accesses a data product, using its top-level data product discovery
API (“Discover, Understand, Trust, and Explore” on page 233), it first gets to learn
about the data product’s semantic—what domain information the product is serving
e.g., podcasts, podcast listeners, etc.—and then it accesses one of the data product’s
output APIs (“Output data ports” on page 159) for a particular mode of access to
the data. How the data is served depends on the underlying (physical) technology:
subscribing to an event log, reading distributed columnar files, running SQL queries
over relational tables. Domain-oriented semantics is the top-level concern, while
formats and the mode of access are second-class concerns. This is an inverse model
to existing architectures, where the storage and encoding technology dictates how the
data is organized first and then it is served.

Figure 12-2 shows the diverse modes of access with an example. The play events
data product provides access to its play events data through three modes of access:
subscribing to its “play events” topic (capturing the state changes of listeners as they
log in, play a podcast, stop playing, etc.), accessing the same play events through SQL
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1 A single data topology may have multiple modes of access. For example, data formatted as a stream of events
can be used by SQL and publisher/subscriber access modes.

queries (over tables with rows of attributes of events), and columnar object files (a file
for each attribute of all events).

Figure 12-2. Example of a data product’s multimodal access

These three modes of access and topologies of the data can satisfy diverse personas
of consumers: a data-intensive app developer watching for error events to improve
the quality of the player, the data analyst using the synchronous SQL access model to
create a daily report of top player usage patterns, and a data scientist using the file
access mode to train its ML model discovering classification of play patterns.1

All this is enabled by the same data product, play events, through its individual
output data ports.

Today, the complexity of supporting multimodal access is the
symptom of the absence of higher-order and abstraction APIs to
present and query data semantically and agnostic to its underlying
encoding and format.
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Immutable data

No man can cross the same river twice.
—Heraclitus

Immutable data, once it is created, doesn’t change. Data products serve their data in
a way that once a piece of data is processed and made available to the data users, that
specific piece of data does not change; it cannot be deleted or updated.

Changing data often leads to complexities and errors, something that is known by
any experienced programmer. This is why there’s considerable interest in functional
programming, which holds as a key axiom that data is never changed.

This is particularly relevant to analytical use cases. With immutable data, data users
can rerun analytics in a repeatable way; retraining models or regenerating reports on
a particular point-in-time dataset gives the same repeatable result.

Repeatability is needed because often results yield a striking observation that requires
the analyst to dig deeper. If the data they are using changes, then they may not be able
to reproduce the striking result and may wonder if this is due to a data change or a
programming error. If there is a bug in the analysis, it’s much harder to track down
when working with an unstable data source, where the analyst cannot get the same
answers from repeated runs of the same code.

The confusion and complexity of mutable data is made worse in data mesh, where
source data can be used by multiple data products, and multiple data products can be
the sources of a particular analysis where multiple data products each keep a slice of
truth contributing to the larger understanding of a state of business. The distributed
nature of data mesh demands immutability to give confidence to data users that (1)
there is consistency between multiple data products for a point-in-time piece of data
and (2) once they read data at a point in time, that data doesn’t change and they can
reliably repeat the reads and processing.

Figure 12-3 shows a simple example: a listener demographics data product provides
geographic demographics of the listeners on a daily basis, where the listeners con‐
nect. It has two downstream data products, artists regional popularity (where most
listeners for an artist are located) and regional market size (number of listeners
in different regions). These two data products are part of the source for regional
marketing data product, which recommends regional targeted marketing activities. It
uses regional market size to identify low-risk countries with the least market impact
to do A/B testing or experiments, and artists regional popularity to promote artists
based on their popularity.
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Figure 12-3. Example of correlating inconsistent data

Each of these data products has its own cadence in processing and serving data.
Hence, there is no way to guarantee that all their data updates at the same time. This
can lead to a deadly diamond. If listener demographics updates its data at the time
that regional marketing runs its analysis, it can consume inconsistent data because
listener demographics could serve data before the update, and regional market size
after. Worse, regional marketing doesn’t even know about this inconsistency.

Data mesh addresses this problem by removing the possibility of updated data going
undetected by data users. Changes to data are always presented as new pieces of
data with identifying time-variant attributes so data users never get to correlate
inconsistent pieces of data, each coming from a different data product. The most
general way to do this is to use bitemporal data, which I cover in the next section.
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2 Eventual consistency means that at some point the mesh will become consistent once a data product’s newly
processed data propagates to its downstream consumers.

For example, listener demographics shares its data as tuples like {listener_id: ‘123’,
location: ‘San Francisco’, connection_time: ‘2021-08-12T14:23:00, processing_time:
‘2021-08-13T01:00’}. Each piece of information has two time-variant identifying
fields, the “connection_time,” e.g., when the listener connected to listen to music,
and the “processing_time,” when listener demographics processed this information.
Once this tuple is processed and made available to data users, it never changes.
Of course, the same listener may listen to content the next day from a different
location, and that would manifest itself as an appendance of a new data entity
{listener_id: ‘123’, location:’New York’, connection_time: ‘2021-08-13T10:00’, process‐
ing_time: ‘2021-08-14T01:00’}. These are two different pieces of time, while they still
convey an update, a new location of the listener.

More generally, immutability of data reduces opportunity for incidental complexi‐
ties, complexity in dealing with the side effects of shared states’ updates across a
distributed mesh of consumers and solving the intractable computer science problem
of distributed transactions. Imagine the complexity that goes into the code of each
downstream data reader on the mesh if the mesh allows that the data they have
already consumed keeps changing, or replaying the same reads yields a different
result. Immutability is another key enabler of design for change and maintaining the
eventual consistency2 of the mesh through the propagation of new processing times
and their immutable states.

Keeping data immutable is important any time but is particularly vital for the data
mesh. But it’s also true that past data changes as new information becomes available
or data processing bugs are fixed; hence, we need to be able to make retracted
changes to data. Let’s look at bitemporality to see how data mesh implements immut‐
ability and retracted changes and how it allows for data to change even though it
must remain immutable.

Bitemporal data

It seems that change and time are inseparable: changes take time; are located and
ordered in time; and they are separated by time. The inseparability of time and change
is a kind of logical truth.

—Raymond Tallis

Bitemporal data is a way of modeling data so that every piece of data records two
timestamps: “when an event has actually occurred or a state actually was,” actual time,
in combination with “when the data was processed,” processing time.

208 | Chapter 12: Design Consuming, Transforming, and Serving Data



3 Reprocessing previous data, e.g., fixing a past error, results in a new data entity and a new processing time.
The data product’s obsolete record policy can decide whether the past (error) data entity is retained or not.

4 The definition of infinite depends on the data retention policy of the data quantum.

Bitemporal data modeling makes it possible to serve data as immutable entities,
i.e., as tuples of {data product fields, actual time, processing time}, where processing
time monotonically increases every time a new data entity is processed,3 and to
perform temporal analysis and time travel, i.e., look at past trends and predict future
possibilities. Both of these outcomes are essential to data mesh.

For example, consider a typical temporal analytical use case that predicts the growth
of Daff ’s business: a growth prediction model. This model uses subscription changes
over a long period of time to discover patterns and trends. It uses the actual
time of the subscriptions data product—the time when subscribers actually join
or leave their memberships—correlated with other actual times of other related
events from the marketing activities, calendar, and support issues data products.
These data products process and serve data with a different cadence. To train a
repeatable version of the model, using consistent data from different data products,
growth prediction selects a common processing time—when the data products have
processed and become aware of an event. For example, the version of the model
trained on 2022-01-02T12:00 uses the subscriber information, support issues, and
marketing events of the last three years (actual time), known and processed, as of
2022-01-02T12:00 (processing time).

Actual time and processing time are the two entangled axes of time that a data
product preserves and serves:

Flux of actual time
To represent the data in a form that meets the needs of analytical use cases, the
data product captures and shares the state (or events) of the domain over time,
over an infinite4 span of time. For example, the podcast listeners data product
can share “daily podcast listeners information from a year ago to now.”

The actual time is the time when an event occurs or the time when a particular
state exists. For example, 2021-07-15 is the actual time of podcast listeners (data)
who actually listened to Daff ’s podcasts on this date. The presence of actual
time matters, as predictive or diagnostic analysis is sensitive to the time when
something actually happens. This is not the case for many of the operational
functions. Most of the time the operational functions deal with the current state
of the data, e.g., “give me the current address of present podcast listeners to send
them printed marketing material.”
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Actual times fluctuate. A data product can observe out-of-order actual times or
receive new data about the same actual time after a correction is made on the
source data.

Continuum of processing time
The processing time is the time at which a data product observes, processes,
records, and serves its knowledge or understanding of the state or event, for
a particular actual time. For example, on 2021-08-12T01:00, the podcast lis‐
teners data product processes all data about people who listened to podcasts
on 2021-08-11 and gains an understanding of the state of the world then.
2021-08-12T01:00 is the processing time.

Providing processing time as a mandatory attribute of data is the key to design for
change. Our understanding of the past changes; either we fix errors that occurred
in the past or become aware of new pieces of information that improve our
understanding of the past. We can’t change the past, but what we can change
is the processing time of the present. We serve a new piece of data with a new
processing time that reflects fixes of the past actual times.

Processing time is the only time that can be trusted to move forward
monotonically.

I use processing time to collapse four different times into one:

Observation time
When a data product becomes aware of the event or state

Processing time
When the data product processes and transforms the
data observed

Record time
When a data product stores the processed data

Publish time
When the data becomes available to data users for access

These subtle time differences are most relevant to the internals of a
data product and not the data users. Hence, I have collapsed them
into one processing time that matters most to the data users.

Martin Fowler presents this bitemporality in a simple and brilliant post, “Bitemporal
History”. In this section, I summarize how data products adopt this concept, in a
unified model, agnostic to the latency of the processing and the shape of the data
(events or snapshots).
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Impact of bitemporality.    Let’s briefly discuss the positive impact of bitemporality in a
few scenarios:

Retractions
Our understanding of the world continuously evolves. Our understanding of the
world can have errors or missing information. In this case at a later processing
time, we fix our misunderstandings. For example, at 2021-08-12T1:00 we process
all the information about “People who listened to podcasts on 2021-08-11,” but
we make a mistake in counting the number of listeners and calculate 3,000.
The next time we process the information at 2021-08-13T10:00, we fix the
error and create a new count, 2,005 listeners on 2021-08-11. 3,000 and 2,005
become two different values, for the same identity, “Podcast listeners count on
2021-08-11,” captured and shared as two separate states, the state processed at
2021-08-12T10:00 and the state processed at 2021-08-13T10:00.

Using bitemporality builds in change, change in the state of data, its data model,
SLO metrics, etc. The continuous processing of change becomes a default behav‐
ior built into all consumers and the mesh as a whole.

This greatly simplifies the logic of data users. Updates to the past are no longer
a special case and a surprise. They are just newly processed data that tell a new
story about the past. The consumers can keep track and pin the data they have
processed at a point in time in the past and travel back to it to access a past
revision of data. Of course, building such a system is no easy engineering task.

Skew between processing time and actual time
Skew is the time difference between actual time and processing time. Only true
real-time systems have a negligible skew: the event gets processed, and our
understanding of the world gets formed, almost exactly when an event happens.
This is very rare in data processing systems, particularly in analytical data pro‐
cessing with a chain of data products, each processing data multiple hops away
from the actual source of an event. The presence of the two times informs the
data users of the skew so that they can make a decision on how to process the
data based on their timeliness needs. The further away from the source-aligned
data product, the larger the skew can become.

Windowing
It is common for a data product to aggregate upstream data over a window of
time. For example, play sessions aggregates all the events during an engagement
of a listener with the player device—e.g., a series of play events when the listener
navigates from one podcast to another, finally picks one, and then drops out after
a few minutes of listening and puts the player away. It helps with the behavioral
analysis of the listeners engaging with the player. In this case, the actual times
of play events can span multiple minutes, a time window. Data users with the
knowledge of the window can perform time-aware operations on the data.
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Reactive processing of continuous change
Data mesh assumes a world in constant change. This constant change can be
in the form of new data arriving or our understanding of past data evolving,
marked by the processing time. Data products can continuously process change
by reacting to the event that their upstream data product has changed: a new
processing time has become available.

Processing time becomes a primitive mechanism for creating reactive and asyn‐
chronous data processing between connected data products.

Temporality versions all aspects of a data product
Processing time, a data product’s notion of time, is built into all attributes and
properties of a data product that change over time: data schema, data semantic,
relationships between data, SLOs, and other meta. They automatically become
versioned by time.

Processing time becomes a primitive for versioning permanent properties of a
data product, i.e., data schema. The processing time becomes a parameter to
correlate time-variant information such as SLOs of the data products.

Example.    Let’s look at the previous example, visually. Figure 12-4 shows the two
dimensions of time and their relationships to each other, for a single data product.

There are a few notable pieces demonstrated in Figure 12-4:

Skew
It is inevitable that the data quantum processes an event and gains and formu‐
lates its understanding of the state of its data, later than the point in time
when an event actually occurs. For example, the state of the daily listeners
during 2021-08-11 is known by the system later than its occurrence time at
2021-08-12T01:00. There is a skew of at least 1 hour to know the daily state of
podcast listeners, and up to 25 hours.

Processing error
The total listeners processed at 2021-08-12T01:00 had an error in its calculation
and captured the total daily listeners of 2021-08-11 as 3,000 people instead of
2,005, a bit more optimistic.

Retractions
The error that occurred on 2021-08-12T01:00 was caught by the data product
developers, a fix was applied to the processing code, and on the next processing
interval at 2021-08-13T01:00 the correct value of 2,005 is reported. Hence, the
data served at processing time 2021-08-13T01:00 includes data for daily podcast
listeners of 2021-08-11 and 2021-08-12.
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Figure 12-4. Actual time and record time relationship

What Figure 12-4 shows is that the data serving interface and APIs are a function
with two time parameters, a processing time and an actual time. For simplicity of use,
they can take special and default parameters like latest for data users who are only
interested in the latest state of the data.

In this example, I have used a low-resolution wall time for simplicity. The gover‐
nance standardizes how time is standardized, and the platform implements that
consistently. The processing time guarantees ordered reads. It can be implemented as
an internal system time, an incremental counter since an epoch, or a monotonically
increasing number. Data consumers use the processing time as an index to know
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5 Often an underlying technology like Kafka provides this mechanism.
6 The duality of data processing can be observed in many systems: streams versus table (e.g., Confluent),

snapshots versus deltas (e.g., Databricks Delta Lake).

what data they have consumed.5 The actual time can follow a DateTime standard like
ISO 8601.

The data users of analytical data can perform time travel and go back and forward
in time when accessing data. The upper bound of how far they can travel back can
vary: to the first data ever processed or just to the latest one. This depends on the data
product’s retention policy.

Figure 12-5 demonstrates a simple visualization of this time travel across the axis of
processing time.

Figure 12-5. Serving data on the axis of processing time

States, events, or both.    How systems encode and process data falls into two camps:
states and events.6 State captures the condition of a system at a point in time, e.g.,
“number of podcast listeners today.” Event captures the occurrence of a particular
change of state, e.g., “a new podcast listener connected.” While state or (change)
events require two very different ways of storing or serving data, I consider that an
orthogonal concern to the time dimensions we discussed here. It’s up to the data
product’s logic whether it makes sense to capture or serve a stream of change events,
or the stream of inferred states of the system as snapshots, or do both. It’s likely that
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data readers would like to see both. Nevertheless, the presence of the two time axes
remains.

Reduce the opportunity for retracted changes.    As discussed early, changing past data
(retractions)—due to fixes or arrival of new data—is handled like any other newly
processed data. Fixed data is presented as a new data entity with an actual time that
belongs to the past, but with a new processing time. Additionally, in the next section,
“Read-only access” on page 216, I will present a special-case handling of data updates
such as exercising the right to be forgotten at the mesh level.

Despite the methods to handle retractions, data products must strive to reduce errors
and the need for retractions. Here are some strategies for reducing the need for fixes:

Increase the processing time interval to introduce quality control
Imagine the play events data product. It captures the signals coming from player
devices. The data product can occasionally miss events or receive delayed ones.
This is due to network interruptions, no access to the on-device cache, etc.
However, the data product transformation code can introduce a processing delay
to correct the missing signals through synthetically predicted/generated ones, or
aggregate the signals to a median or other statistical representation of the same
data. This means that the data product is introducing a longer skew between
the actual time and the processing time to have an opportunity to fix the errors
in time and avoid retractions. This is often a suitable technique for business pro‐
cesses that have an inherent need for reconciliation. For example, while receiving
payments transactions near real time, there is a daily dump of corrected and
reconciled payment accounts that get served later. This would require increasing
the processing interval. In the case of payments, the correctness of accounts is
preferred over the timeliness of transactions.

Adjust the data product’s SLOs to reflect the expected errors
If we continue the preceding example, some consumers might be perfectly toler‐
ant of the errors in the near-real-time data. For example, an app detecting player
errors, on best effort, doesn’t care if there are missing events here and there.
In this case, the play events data product can publish the data without reconcilia‐
tion for a category of consumers like the “player error detection” app. However in
this case, the data product communicates its quality objectives according to the
expected range of errors that may occur in terms of missing signal.
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Read-only access
Unlike other analytical data management paradigms, data mesh does not embrace the
concept of the mythical single source of truth. Every data product provides a truthful
portion of the reality—for a particular domain—to the best of its ability, a single slice
of truth. Data can be read from one data product, morphed and transformed, and
then served by the next. The mesh maintains its integrity through the propagation
of change as appends of bitemporal immutable data from an upstream data product
to the downstream consumers, automatically. As such, the mesh maintains a state of
eventual consistency as new data propagates through the graph.

By now, it might seem obvious that the mesh or individual data products do not
present a direct update function; updates are the indirect result of the data product
processing its input. Change to a data product, in the form of appends of newly
processed data, is only carried out by the transformation code of a data product. This
guarantees immutability and also maintains the eventual consistency of the mesh.

However, there are cases such as the global governance administrative functions
executing the right to be forgotten, in accordance with regulations such as GDPR, that
change the data.

You can think of these as a specific administrative function, triggered by the mesh
experience plane, on all data products’ control ports (“Control Port” on page 167),
executing the command, in this case a crypto shredding. Data products always
encode the user information encrypted; by destroying the encryption keys—which
live on the platform and not in the data product—the user information is essentially
rendered unreadable. If you do find yourself with other special-case operations that
require updating data that is already processed, this operation is implemented as a
global control port function, and not a function of an output port. Keep the output
ports for data users to just read data.

Serve Data Design
Let’s bring it together and look at the design of the data product to serve data. Fig‐
ure 12-6 shows a likely logical architecture, where data products own and maintain
a core representation of their domain and serve that in multiple spatial modalities,
using the concept of output data port adapters. Each port, always, provides data in a
bitemporal, immutable, and read-only mode. The data retention’s duration depends
on the policy of the data product. It may retain and make data accessible for many
observations (processing times), just the latest, or somewhere in between.
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Figure 12-6. Data product’s high-level components to design serve data

Table 12-1 summarizes the data product components involved in serving data.

Table 12-1. High-level data product components to serve data

Serve data
component

Description

Output data port Interface (API) to serve data according to a specific mode of access for a particular spatial format of
data (syntax). This implementation could simply be an API that redirects access to a particular physical
technology, e.g., a bitemporal table in a warehouse storage, a file in a lake storage, or a topic of an
event log.

Output (data) port
adapter

The code responsible for presenting the data for a particular output port. The implementation could
simply be a step in the data product’s transformation code that stores data in a particular syntax, or as
sophisticated as a runtime gateway for adapting core data stored to many modes of access on read.

Core data semantic Expression of the data semantic—agnostic to the modes of access or its spatial syntax.

Consume Data
In the majority of cases, data in organizations originates from the internal or external
operational systems, in interaction with people or other operational agents, such as
devices. In some cases, data is received as purchased or freely downloaded archives.
For example, the operational data in Daff is generated by listeners subscribing and
listening to different content, content providers publishing music, and the artist
management team paying and handling the affairs of the artists, and so on.
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Data products consume this data and transform and serve it in a manner suitable for
analytical use cases. Hence, in the majority of the cases, data products consume data
from one or multiple sources.

Architecturally, input data ports (“Input data ports” on page 159) implement the
mechanisms necessary for a data product to define and execute the consumption of
its source data. The input data port is a logical architectural construct that allows a
data product to connect to a data source, execute queries, and receive data—events or
snapshots—as a continuous stream or a one-off payload. The choice of the underlying
technology is an implementation-specific concern and is left to the data platform.

Figure 12-7 shows a high-level picture of how data products consume data. A data
product consumes data from one or multiple sources. The sources could be a col‐
laborating operational system or other data products. The consumed data is then
transformed into the core data model and served in multiple modalities via its output
ports.

Figure 12-7. Data product’s design to consume data
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Each data product can have one or multiple sources. Source-aligned data products
(“Source-Aligned Domain Data” on page 21) mostly consume their data from the
operational system. As we get into aggregate data products (“Aggregate Domain Data”
on page 23) we see other data products becoming the source, and consumer-aligned
data products (“Consumer-Aligned Domain Data” on page 24) often include smart
logic or machine learning models to provide locally sourced data for particular use
cases.

Let’s dive into some of the notable characteristics that impact the design of a data
product’s input data.

Archetypes of Data Sources
The design of data input capability must support multiple archetypes of sources. Here
are a few top-level categories:

• Collaborating operational systems•
• Other data products•
• Self•

Collaborating operational systems as data sources
Source-aligned data products consume data from their collaborating operational
systems, one or multiple applications that generate data as a byproduct of running
the domain’s business. They consume data optimized for the operational system and
transform it to a format suitable for analytical usage. They decouple downstream
analytics use cases from the internal details of the operational application.

The phrase collaborating here implies a tight coupling between the data product
and its source operational system. They both must belong to the same domain. The
operational data contract between the source application and the data product is
often tightly coupled; changes to the operational system’s data and model impact the
data product’s data and model.

That’s why I highly encourage keeping the collaborating operational system sources
and their collaborating data products in the same domain. This allows the domain
team in charge of the changes to the operational systems to collaborate closely with
the data product developers to keep the two in sync.
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There are cases where an operational system is not aligned to a single domain,
e.g., CRM COTS (customer relationship management as a commercial off-the-shelf)
products encapsulate multiple domains of products, customers, sales, etc., into one.
In this case the COTS system can expose multiple domain-aligned interfaces, each for
a particular source-aligned data product.

Figure 12-8 shows an example of a source-aligned data product input. The listener
subscriptions data product consumes data from a microservice in its domain, lis‐
tener subscription service. It receives the changes in listener subscriptions as near-
real-time events published on an event log. The subscription events log is controlled
and maintained by the operational system, as a short-retention medium. The data
product consumes the events, performs transformations on them, and ultimately
serves them as a long-retention temporal view of listener subscription information.

Figure 12-8. Example of a data product with input from a collaborating operational
system

Common mechanisms for implementing the input port for consuming data from
collaborating operational systems include asynchronous event-driven data sharing
in the case of modern systems, and change data capture for legacy systems that
are difficult to change. Modern operational systems sharing their domain events is
increasingly becoming a common practice and is a great model for feeding data to
a collaborative data product. Change data capture is a set of integration patterns to
discover and track changes to an application database, which then can be sourced as
the input to the data product. This is the least desirable way to receive data from a
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collaborating operational system. It exposes the internal implementation of a database
transaction and doesn’t correspond to a business domain. But sometimes it is the
only available option in the case of legacy systems.

How a data product consumes data from an operational system is heavily influenced
by the ability of the team to extend the operational system. The design ultimately
depends on the agreement within the domain’s team on how to integrate their opera‐
tional system with their data product.

Other data products as data sources
Data products can consume data from other data products on the mesh. For example,
the podcast demographics data product receives attributes about the listeners from
listener profiles and podcast listeners data products. It correlates the listener profile
information with the podcast listeners and applies classification transformation to
these sources. It then serves information about the podcast demographics. This
example is depicted in Figure 12-9.

Figure 12-9. Example of a data product with input from other data products
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In this case, the input port consumes data from another data product’s output ports.
The source data product can belong to either the same domain or other domains.
Nevertheless, the implementation of input data ports and how they consume data
from other data product’s output ports is standardized.

A data product utilizes its upstream output’s actual time and processing time to select
its desired data. In the case of a streaming input, the input port mechanism will keep
track of the processing time in the source data to process new data as it arrives.

Self as a data source
In some cases, a data product’s local computation can be the source of data. For
example, a local transformation such as a machine learning model inference gener‐
ates new data. Consider the artists data product as shown in Figure 12-10. Its trans‐
formation runs a machine learning model that adds new data, such as “emerging”
or “declining” data for artist classification, to the information it receives from the
artist onboarding microservices. Additionally, the data product uses locally stored
data such as a list of possible classifications as its input.

Figure 12-10. Example of a data product with local input
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Locality of Data Consumption
Data mesh leaves many of the implementation decisions to the underlying technol‐
ogy. Data mesh architecture is agnostic of the underlying technology and infrastruc‐
ture—as much as possible.

For example, where the data is physically located and whether a consuming data prod‐
uct physically copies data from one location to another are implementation details
built by the platform. However, data mesh architecture components such as input and
output ports are great interfaces to abstract the internal implementation of data or
processing movement across physical boundaries. A simple set of APIs that connect
a data product’s input port to another’s output port can hide the physical movement
of data from one physical storage and trust boundary to another. Similarly, executing
the data consumption request can execute a remote query issued from one computa‐
tional environment to another.

The implication of this design is that a mesh can span one or multiple physical
infrastructures, multiple clouds, and on-prem hosting environments. This means that
when a data product consumes data from its source, in that process, it can physically
move data from one underlying hosting environment to another. This seemingly
simple capability can have a profound impact on data migration to the cloud and a
multicloud data platform.

For example, Daff is moving all their analytical data and processing to a cloud
environment. Today, the podcast service runs on an on-prem infrastructure, along
with its underlying operational database. The podcast listeners data product runs on
the cloud. It consumes data through an asynchronous input data port interface. Once
a new podcast listener is registered, the podcast listeners data product essentially
copies that information from an on-prem stream to its cloud storage and then makes
it available through its cloud-based output data interfaces.

This implements a continuous data migration through data products from one
environment to another, without a big bang data migration strategy. The same
mechanism can move data from one cloud provider to another. For example, if a
company has a multicloud strategy and they want to keep data across multiple cloud
providers, implementation of the input port can move data from the source’s cloud
provider to the consumer’s. Of course, for this to become a reality, the underlying
platform infrastructure must support a few key features such as internet-compatible
addressability of data products, identity authentication and authorization across trust
boundaries, and internet-accessible endpoints for output data ports.
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Figure 12-11 demonstrates data consumption between two different data products
across two environments.

Figure 12-11. Multi-environment data consumption model

Data Consumption Design
Data products intentionally specify what data, from which sources, and how they
consume data. The data product specifically defines and controls the capability to
consume data. This is contrary to other data architecture where sources dump data
on the processors without knowledge of where and how the data gets to them.
For example, in previous architectures an external directed acyclic graph (DAG)
specification defines how the processors get connected to each other centrally, rather
than each processor defining how it receives data and serves it.

Figure 12-12 demonstrates the data product’s high-level design components to con‐
sume data through input data ports.
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Figure 12-12. Data product’s high-level components to design consume data

Table 12-2 summarizes a data product’s high-level components to design consuming
data.

Table 12-2. Summary of data product’s high-level components to design consume data

Consume data
component

Description

Input data port(s) The mechanism by which a data product receives its source data and makes it available for further
internal transformation.

Input data port(s)
specification

A declarative specification of input data ports that configures from where and how data is consumed.

Asynchronous input
data port

Asynchronous input port implementation reactively calls the transformation code when the necessary
source data becomes available. Subscription to event streams or asynchronous I/O read on files are
examples of async input ports. An asynchronous input port keeps track of the source data product’s
processing time pointer and when it receives data for a new processing time it reactively executes the
transformation.

Synchronous input
data port

Synchronous input ports pull data from the source and call the transformation code when the data is
fetched.
For example, “Daily podcasts summary” pulls data from podcast listeners synchronously and
calculates the count and other summaries when the data is fetched. It pulls data daily at midnight.
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Consume data
component

Description

Remote query An input port specification can include the query executed on the source to receive the desired
data. This capability reduces the amount of data that is otherwise fetched redundantly. The query is
expressed in a query language that the source understands, such as SQL, GraphQL, Flux, etc., and is
defined by the input port specification.

Input port
synchronizer and
temporary storage

Input ports often interdependently consume data. For example, the artist classification
transformation code can’t start running until data from two independent sources of artists
and listeners becomes available. Temporary storage is necessary to keep track of observed and
unprocessed data, until all observations needed become available for processing.

Transform Data
Almost all data products perform a transformation, no matter how minimal. We cre‐
ate a data product because we see value in sharing a new analytical model of existing
data. Creating this new model requires transformation. Creating and maintaining the
transformation code is what a data product developer pays most attention to.

Traditionally this transformation has occurred in the data pipelines moving data from
an input source to an output sink. In data mesh design, the transformation—whether
implemented as a pipeline or not—is encoded in and abstracted by the data product.

The transformation is an internal implementation of a data product and is controlled
by it. Since it’s an internal concern, I don’t intend to be specific in how it must
be designed. In my opinion, it’s up to the taste, capabilities, and needs of the data
product developer to choose how to implement the transformation.

It is helpful to look at a few different ways of implementing the data product’s
transformation.

Programmatic Versus Nonprogrammatic Transformation
Data processing and transformation falls into two main camps: nonprogrammatic
transformations (e.g., SQL, Flux, GraphQL) and programmatic data processing (e.g.,
Apache Beam, Apache Spark, Metaflow).

Nonprogrammatic approaches either use relational algebra performing set operations
such as SQL, or flow-based functions such as Flux. Either way, the idea is that we
can capture the intent of how data is transformed from one set to another with
a statement. It is simple and approachable for many data product developers, but
also limited to the features of the statement. For more complex transformations the
statements become difficult to understand, hard to modularize, and challenging to
test automatically.
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In practice we should not find many data products that simply perform nonprogram‐
matic transformations. Any other downstream data product can run the same remote
queries themselves, and there is no need for intermediary data products.

Figure 12-13 demonstrates an example of a nonprogrammatic transformation. The
intention is to create demographic information for top listeners. The top listeners
data product uses its input ports on played songs and listener profiles to capture the
profile information of listeners who have listened to songs today. Then it produces
various statistics on demographics of listeners, e.g., age groups who have listened
most or least today, countries that have listeners most or least today, etc.

Figure 12-13. Example of a nonprogrammatic transformation

On the other hand, programmatic data processing uses code logic, conditions, and
statements to transform data. Programmatic data processing libraries such as Apache
Beam or Apache Spark can be used in different programming languages such as
Python, Java, etc. The transformation code has access to the full power of the hosting
programming language, imperative or declarative. It can be modularized and tested.
This approach is more complex for noncoding data product developers but more
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extensible. The advantage of this approach is that the statistics can be calculated
incrementally as more records about played songs arrive.

Data mesh doesn’t take a position on what approach a data product adopts for its
transformation and relies on common sense: use programmatic approaches for more
complex use cases, and use a nonprogrammatic approach when the transformation
is trivial and simple. Or even better, if the transformation is trivial and nonprogram‐
matic, do nothing and don’t create an intermediate data product. Just leave the end
consumers to run the queries themselves. Note that, even in the case of programmatic
transformations, the input port may evoke a nonprogrammatic query on the source
before processing it. This reduces the amount of data moved to the transformation
code and pushes the processing to where upstream data resides.

Dataflow-Based Transformation
The dataflow programming paradigm, introduced in the 1960s, defines a computer
program as a directed graph of the data flowing between operations. This program‐
ming paradigm has inspired many modern data pipeline designs.

A data pipeline is a series of transformation steps (functions) executed as the data
flows from one step to another. Data mesh refrains from using pipelines as a top-level
architectural paradigm and in between data products. The challenge with pipelines
as currently used is that they don’t create clear interfaces, contracts, and abstractions
that can be maintained easily as the pipeline complexity grows. Due to lack of
abstractions, single failure in the pipeline causes cascading failures.

The pipeline—or dataflow-based programming model in general—within the bound‐
ary of a data product is a natural paradigm for implementing the transformation
code. In this scenario, pipelines tend to get less complex, since they are bounded
by the context and transformation of a single data product. They also get upgraded,
tested, and deployed as a single unit with a data product. Hence, pipeline stage tight
coupling is less of a concern.

In short, using data pipelines within the boundary of a data product for transforma‐
tion is OK, as long as the pipeline stages don’t extend beyond the boundary of a
data product. No transformation occurs between data products, beyond providing
and consuming data through read-only output and input data ports. I call this the
principle of dumb pipes and smart filters.
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Figure 12-14 shows the high-level components involved in a pipeline transformation.

Figure 12-14. Pipeline transformation

ML as Transformation
The third transformation category is model based; deploying and running a machine
learning or statistical model as a data product’s transformation. For example, imagine
Daff using a TensorFlow recommender to recommend songs to extend the listener’s
existing playlists. The TensorFlow model can be serialized and deployed as the play‐
list recommender data product. The data product consumes the listeners’ playlists,
makes predictions on what songs are recommended next, and stores those as playlist
extension recommendations that are read and used when the listeners play their lists.
The recommender model is executed within a program and a desired programming
language, but its computation is mainly performed by the model.

ML models can be deployed in many different contexts such as microservices and
applications, as well as data products.

Time-Variant Transformation
The common characteristic of all transformations is respecting the axes of time—pro‐
cessing time and actual time. The transformation code is aware of the time parameters
when it processes the input and when it generates output with the respective times.
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The input port mechanism keeps track of the processing time of each source. The
transformation code generates the actual time of its output based on the calculation
performed on the source data. The output port serves the transformed data accompa‐
nied with the data product’s internal count of processing time.

Transformation Design
The design of the transformation—build-time definition, deployment, and execu‐
tion—is heavily dependent on the framework of choice and the underlying tech‐
nology. Whether the transformation is implemented by a declarative statement or
programming code, platform capabilities are required to build, test, deploy, and run
the transformation.

Figure 12-15 shows a few high-level design elements involved in a data product’s
transformation.

Figure 12-15. High-level components to design transformation for data products

Table 12-3 summarizes the high-level components involved in designing the data
product transformation affordance.
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Table 12-3. Summary of high-level components to transform data for a data product

Transform data
component

Description

Transformation
artifact(s)

The code, configuration, statement, or model that defines the transformation. This artifact is
executed on the input data to produce the output, for a particular record time.

Transformation
runtime environment

Transformations are invoked based on the configuration of the transformation, for example on
a regular time basis or availability of the necessary input data. Once invoked they require a
computational environment to execute, bounded by the data product container. The underlying
platform provides this environment.

Temporary storage Steps of a transformation code may require access to temporary storage that persists state across
different phases of transformation. This is provided by the underlying platform.

Recap
In this chapter I presented a few core design elements and characteristics of data
products as an architecture quantum, to autonomously consume, transform, and
serve data.

To serve data in a distributed mesh architecture, I identified a few properties for
the data products’ output ports: serve bitemporal, immutable data via read-only and
multimodal APIs. These constraints were driven by the objectives and assumptions of
data mesh:

• Data products serve their domain-oriented data natively to a wide set of data•
users (multimodal access).

• Data products can be used in temporal analytics use cases (bitemporal).•
• Data products can safely consume data from other data products, as well as•

transform and serve it, while maintaining a global state of eventual consistency at
a point in time (bitemporal).

• Data product users process data for analytics and ML (read-only).•

Data products have control over where and how they receive their upstream data.
They use their input ports to get data from collaborating operational systems in the
same domain or upstream data products. The input ports can implement data move‐
ment between different hosting environments in support of a multicloud deployment
or an incremental cloud migration.

Data products almost always perform some kind of transformation in order to serve
higher-value data. The transformation implementation can have multiple forms,
including data pipeline functions, a sophisticated query, or ML model inference.

This chapter sets a high-level frame of thinking and approach to the design of
data products in their core function of data sharing. I expect that future data mesh
implementations evaluate and refine this.
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CHAPTER 13

Design Discovering, Understanding,
and Composing Data

Discovering, understanding, and trusting data is a necessary step of data journeys.
What makes data mesh’s approach unique is how to discover, understand, and trust
data in a decentralized mesh of interconnected and autonomous data products,
without creating centralized bottlenecks.

Similarly, composing new data from intersections and aggregations of multiple exist‐
ing data is a basic function necessary for all data work. Data mesh introduces the
ability to compose multiple data products in a decentralized fashion without creating
tightly coupled data models that become bottlenecks for change.

This chapter introduces each affordance of data discoverability and composability
briefly. I describe data mesh’s position and introduce the design considerations so that
each individual data product plays a part, locally, in its discoverability, understanda‐
bility, and composability. I discuss how these local affordances of a data product
surface mesh-level capabilities across many data products without creating tightly
coupled synchronization points.

This chapter describes the boundaries of a data mesh approach, what is compatible
with the objectives of data mesh, and what is not. The exact specifications are yet to
be defined and tested and are outside of the scope of this book.

Discover, Understand, Trust, and Explore
Data mesh defines discoverability, understandability, trustworthiness, and explorability
as some of the intrinsic characteristics of a data product. I briefly introduced these
in Chapter 3 as data products’ basic usability characteristics. These properties are key
in enabling the journey of a data user—to find the right data, understand it, trust it,
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and explore its suitability for the analytical use case at hand. These properties answer
questions such as: Is there any data product that tells me something about listeners?
What information is actually provided by a data product about listeners? Can I trust
it? Can I use it for my specific use case with a particular set of data requirements?
How can I get access to it for early experimentations? And so on.

I don’t think there is any dispute about this so far. Where data mesh differs from the
majority of data discoverability approaches today, i.e., data catalog services, is in how
to achieve these affordances.

At the time of writing there are two established approaches: I call the first approach
a posteriori curation and consolidation. In this approach, data stewards or members
of the governance team are tasked with identification, tagging, documenting, and
consolidating information about data that is already generated by the domains, after
the fact. Then this curated information becomes the source for discovery. The other
approach I call a posteriori investigative intelligence. This approach applies intelligent
machine observations, unleashed after the fact on the data that is already generated,
to extract metadata. For example, one could run algorithms over a large body of
operational data to decide the trustworthiness of a table by analyzing who has
accessed it, how widely it is used, and how it is being used. This information creates a
layer of knowledge about the data that is useful for discoverability.

While intelligent and investigative algorithms are helpful to boot‐
strap data mesh, discovering what data is available to an organiza‐
tion prior to implementing data mesh or helping observability of
the mesh by adding additional information to each data product,
they are insufficient.

Data mesh’s main difference with both approaches is that it shifts discoverability left.
Data discoverability, understandability, etc., starts with the data product itself, when
the data product is created and throughout its life cycle. It’s the responsibility of
a data product to share the information needed to make itself discoverable, under‐
standable, trustworthy, and explorable.

Data mesh designs discoverability for machine and human access—people can dis‐
cover, understand, trust, and explore data products, and machines can automate these
functions and build high-order capabilities on top. For example, the mesh experience
plane can automate search of data products, using the discovery data provided by
each data product.

The concept of a discovery (port) API, the mechanism through which a data product
is discovered, was briefly introduced in Chapter 9. In this section, I discuss a few
design elements in implementing discovery ports and focus on what is different in
data mesh compared to other approaches.
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Discovery and understanding aren’t limited only to what I cover in
this chapter. I will discuss it further in the “Observe, Debug, and
Audit” section in Chapter 14.

Figure 13-1 shows the high-level interactions involved in the discovery process.

Figure 13-1. Example of a high-level design for a data product’s discoverability, under‐
standability, trustworthiness, and explorability

The mesh experience plane plays an important role in surface mesh-level discovera‐
bility, such as search and browse functions. The mesh-level operations are enabled
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1 In this book I have used URI for the familiarity of the term; however, the implementations will use IRI
(Internationalized Resource Identifier), which is similar to a URI but with the extended character set.

through data-product-provided data and APIs. Some of the discoverability informa‐
tion is scoped to the data product (e.g., its semantic specification and documenta‐
tion), and some is scoped to each of its output ports (e.g., data format specification,
statistical properties and shape of data, and quality metrics and SLOs).

Let’s look a bit closer.

Begin Discovery with Self-Registration
Discovery of an entity begins with awareness of the entity’s existence and the ability
to locate and address it. In data mesh, discovery begins with a data product making
its existence known to the wider ecosystem, particularly the mesh experience plane
services of the data platform, such as search or browse. Allocation of various pieces
of information such as name, address, and location can be done at different stages
of the build, deployment, or runtime of a data product. There is prior art in the
operational platforms such as a service mesh to register, address, and locate services.
Similar technology and approaches can be deployed here. The minimum information
required to enable a data product to kickstart discovery is a unique name (identifier)
as an addressable endpoint for further querying of information.

Discover the Global URI
Ideally, all data products have a standard interface to describe themselves: a globally
accessible URI1 that is the root to access all other discovery facets of the data prod‐
uct. The information supplied by such a discovery API includes data-product-level
information such as the core data semantic specification, overall documentation,
the access logs, as well as deeper information specific to each of its output ports
such as their specific data syntax and other metadata such as privacy levels, quality
guarantees, etc.

The information supplied by the data product’s discovery API can be updated at
different stages of the life cycle. Some, including the schema specifications, are known
at build time, and others, such as statistics describing the shape of the data, are
created at runtime.

The data product developers maintain the data product discoverability information
along with the data product’s data. They use data platform components such as
standardized discovery APIs provided by the data product experience plane.

Data users often begin their discovery and search through the mesh experience plane
and can quickly deep dive into a specific data product’s discovery information.
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Understand Semantic and Syntax Models
All models are wrong, but some are useful.

—George Box

Data is a collection of facts put together according to a model. The data model is an
approximation of reality, good enough for the (analytical) tasks at hand. Over time
the approach to data modeling has evolved. At the time of writing, there are multiple
common practices: relational tables (SQL data stores), flattened relations into nested
tree structures (JSON structures) stored as columns or rows, property graphs—where
entities and relationships both have properties (graph databases)—semantic graphs
(Semantic Web), time-series data modeling, etc. Some modeling styles are more
expressive and closer to intuitive human understanding of the world, and some are
lossy and optimized for machine processing. For example, property graphs can model
the world more intuitively as they describe the entities, their types, their properties,
and the entities’ relationships with each other. Most importantly, they can model the
type and property of relationships explicitly. This is in contrast to nested tabular
structures, where we have to make assumptions about the nature of the relationships
based on the attribute values. Figure 13-2 shows a high-level modeling of the playlist
domain as a property graph.

Figure 13-2. Example semantic modeling of the playlist domain as a property graph
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2 The semantic model helps the data users to find meaning in data, but it does not convey the meaning by itself.
3 See Great Expectations as an example of a tool for expressing expectations of data.

Ideally, a data product models its business domain data as close to the reality of the
business as possible. I call this the data product’s semantic model: a machine and
human-readable model definition that captures the domain model of the data: how
the data product models the domain, what types of entities the data includes, the
properties of the entities, the relationships between the entities, etc.

In addition to the semantic model, a data product encodes its semantic according to
the access models supported by its output ports. I call this the syntax model. Every
output port will have its own syntax model. For example, the playlist file output
port will model the playlists as a nested table, stored as columnar files and defined
according to the JSON schema. This modeling is optimized for machine learning
training using features (columns across all records).

The semantic model2 is helpful for both machine and human understanding of what
the data intends to capture without making hidden assumptions just by looking at
the syntax model. It helps with the automated validation of data against its intended
model. It also participates in the creation of a larger knowledge graph.

In addition to syntax and semantic modeling, coded data expectations3—the tests that
articulate the expected values and distribution of data—defined by data product users
and developers are greatly helpful to understanding data.

Establish Trust with Data Guarantees
In their quest to find the right data, data users need to assess certain essential
characteristics of data in order to assess whether the data meets the guarantees that
their particular use case requires.

These characteristics fall into different categories, such as objective measures of data
quality, levels of maturity, conformance to standards, temporal characteristics, and so
on.

A data product calculates and shares these objective metrics. For some of these
metrics, it defines and maintains guarantees (SLOs). For example, the play events
data product defines the timeliness of its events as a metric with a guarantee of 10–30
ms (delay range). It serves the latest timeliness metrics as it processes data and strives
to meet its guarantee. These metrics are the means of informing and establishing
trust, as well as a contract to set expectations with the data users.

The definition of these metrics, how to calculate them and present them, is a concern
of global governance and enabled by the underlying data product experience plane in
a standardized way.
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4 At the time of writing, ISO/IEC 25012 standardizes 15 characteristics of data quality.

Following is a list of categories of guarantees. This list is only intended to be an
example and by no means complete. These measures are continuously updated as a
data product processes new data. Similar to other metadata, the metrics are temporal,
i.e., dependent on the data product’s processing and actual times (or time windows):

Data quality metrics
There are a set of characteristics that can be grouped together as quality. These
attributes aren’t intended to define whether a data product is good or bad. They
just communicate the threshold of guarantees the data product expects to meet,
which may be well within an acceptable range for certain use cases. For example,
the player domain may provide two different data products: a play events data
product with near-real-time data and a lower level of consistency, including
missing or duplicate events, and a play sessions data product with longer delays
but a higher level of data consistency. Each can be considered trustworthy for
their respective use cases. Here are a few examples in this category:4

Accuracy
The degree of how closely the data represents the true value of the attribute
in the real-world context

Completeness
The degree of data representing all properties and instances of the real-world
context

Consistency
The degree of data being free of contradictions

Precision
The degree of attribute fidelity

Data maturity metrics
In my opinion, data maturity is defined subjectively by an organization based
on their roadmap and aspirations toward a data-driven operating model. For
example, an organization can define a maturity model based on a few factors
such as degree of usage (how widely the data is being used), life cycle (whether
the data product under development and actively evolving and being optimized
or dormant), diversity (number of modes of access and use cases they support),
linkage (degree of linking to other data products in the form of reusing types and
data), etc.

Data products calculate and share their maturity according to the organization’s
standard model.
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Data standards conformance
There are existing domain-specific data models that a data product may adhere
to in order to increase its interoperability level. For example, in the healthcare
domain, FHIR HL7 resource definitions can increase the level of interoperability
with a larger number of data consumers internal and external to the organiza‐
tion. The decision to adhere to industry standards must factor in the advantages
(e.g., external interoperability) and disadvantages (e.g., transformation cost of
fitting to a one-size-fit-all model).

Data products can express what standards their data model adheres to.

Temporality metrics
Data products intrinsically provide temporal data. Parameters illustrating the
temporal shape of the data are helpful in assessing the suitability of data. Here are
a few examples:

Epoch (actual and processing)
The earliest actual and processing times for which data is available. This
indicates how far back in history a data user can time travel to access data. It
illustrates the data product’s duration of data retention.

Processing interval
A data product can report how often the data is processed, if there is such
a pattern. In the absence of a specific interval, data products can provide
statistics around mean, max, and min intervals. This sets the expectation for
the data consumer as to how frequently they can expect to read and process
new data.

Last processing time
Most recent data’s processing time.

Last actual time (window)
Most recent data’s actual time (or window).

Actual window
The window of actual times over which input data is processed and new data
is created, if the data is aggregated over windows of time.

Timeliness
The degree to which the actual time and processing time are separated. The
timelier the data is, the smaller the gap is between actual time and record
time. In the previous chapter, I used the term skew for this property.

User-driven metrics
So far, all the categories mentioned earlier are provided by the data product—the
provider of data.
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Data users often establish trust based on the experience of their fellow data users
using the data. Hence, the data product must capture and present the perception
and experience of its consumers as a set of quality metrics. For example, the
company may develop a recognition system such as allocating stars that data
users can assign to data products based on their experience (e.g., reduced lead
time in understanding and using the data, the perceived quality of data, the
responsiveness of the data product development team, etc.).

I’ve provided the preceding list to give you an idea of the kind of information a data
product is best placed to calculate and capture, right in the flow of its data processing,
and provide autonomously to consumers to increase their level of trust.

Today, an overly populated landscape of metadata management technologies attempts
to define and expose such information. The data mesh approach is agnostic to these
tools and expects that all data products provide and manage the trust metrics consis‐
tently. There are two notable past open source standards to consult in establishing a
consistent set for trust metrics: Data on the Web Best Practices: Data Quality Vocabu‐
lary and, relatedly, Data Catalog Vocabulary. They attempted to create a consistent
vocabulary with the mission of establishing best practices in providing an open data
ecosystem on the web.

Explore the Shape of Data
Exploring data and understanding its statistically significant properties are critical
to learning and trusting data for a particular use case. Data mesh recognizes data
exploration as a critical step in the journey of data users, even if they ultimately
choose not to use the data.

In scenarios where data users already have access to the data, they can run various
queries—using the data product’s output port—to explore individual records.

However, in many scenarios, where individuals cannot access individual records,
often due to lack of access, they must be able to explore the shape of the data and
evaluate whether it is fit for their particular use case. The data product is responsible
for providing information that lets consumers explore the shape of the data without
processing individual records.

For example, a data product’s discovery interface can include functions that examine
the distribution of data fields, value ranges, value frequencies, percentiles, etc. For
example, to evaluate whether the existing social media mentions data product is
a reliable source for identifying trends, the discovery interface can examine the
“distribution of the sources of individual mentions.” Is only a small group of people
skewing the outcome, or is there a bell curve distribution of sources that can be
reliably used?
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5 Cynthia Dwork and Aaron Roth. 2014. “The Algorithmic Foundations of Differential Privacy,” Foundations
and Trends in Theoretical Computer Science, 9(3-4): 211-407.

More generally, data products can provide access to their data with differential privacy
applied, to enable a host of explorations without providing access to individual sensi‐
tive records. Differential privacy is a technique that improves privacy while retaining
the ability to perform useful analytics on large numbers of data, for example, by
introducing tolerable noise in the data. “Differential privacy lets you gain insights
from large datasets, but with a mathematical proof that no one can learn about a
single individual.”5

Learn with Documentation
Human-readable documentation is a wonderfully powerful tool to help a data user
understand the data product, its ports’ syntax, and its underlying data. Most impor‐
tantly it helps a data product developer to tell a data story. Computational notebooks,
originally introduced by Wolfram Mathematica, have been a trusty companion for
scientists in support of scientific research, exploration, and educational processes.
More recently, they are being extensively used in data science. They give a simple,
document-based, intuitive, and interactive interface to explore data.

Data products can offer and maintain a set of computational notebooks that essen‐
tially communicate how the data can be used and show its properties in action. They
combine human-readable documentation, code, and data visualization all in one
place to tell a compelling story about the data. Additionally, the underlying platform
can facilitate the sharing of data users’ computational notebooks to capture other
novel ways of using the data, expressed by others.

Computational notebooks are a great way to document, educate, and share use cases
about a data product. However, I do not advocate the production application of
notebooks. As they grow, a lack of programming support to create modular, testable,
and scalable code makes maintaining them as long-lived production code difficult.

Discover, Explore, and Understand Design
Almost all the discoverability information I have listed in this section needs to be
standardized across all data products to enable a seamless experience with the mesh,
as well as a fair evaluation and comparison between different data products. This
implies that the platform must be closely involved in providing the standardized
approach in calculating, capturing, and sharing the information. For that, the data
product sidecar (“Data Product Sidecar” on page 165) is best positioned to be exten‐
ded with discoverability capabilities. If you recall from Chapter 9, the data product
sidecar is a platform-provided agent that runs within the computational context
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of a data quantum and is responsible for cross-cutting concerns that intend to be
standardized across all data products.

Figure 13-3 demonstrates the data product sidecar’s interactions in support of discov‐
erability. It is not intended to be a listing of all the capabilities discussed here.

Figure 13-3. A data product sidecar provides a unified model of discoverability for all
data products
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Compose Data
Learn how to see. Realize that everything connects to everything else.

—Leonardo da Vinci

Powerful analytical use cases require correlating and connecting data across multiple
data products and between different domains. For example, the use case of identi‐
fying emerging artists requires training a machine learning model that classifies
whether an artist is gaining popularity during a period of time or not. Training this
model requires correlating data from a variety of data products across the mesh,
including playlists in which the artists’ songs are present, play sessions during which
the listeners play the artists’ music, and social media content where the artists’
mentions appear. The model needs to correlate these data products for each artist and
for a specific window of time. Figure 13-4 demonstrates this example.

Figure 13-4. Example of data product composability
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Data users who need to connect data across the mesh are either an on-the-mesh data
product that is performing transformation on multiple sources or an off-the-mesh
analytical application like an analytics report.

I use the generic term of correlation or composition as a placeholder for operations
that can be performed on two or more data products such as join, union, filter,
intersection, search (traverse), etc.

Consume Data Design Properties
Decentralization of data products imposes the following requirements on how data
composability is designed in a data mesh implementation.

Ability to compose data across different modes of access and topologies
Recalling the previous affordances of consuming, transforming, and serving data
in Chapter 12, data can be served in different modes—e.g., files, database tables,
streams, etc. Hence, the ability to compose data needs to be agnostic to the syntax
of data, underlying storage type, and mode of access to it.

For example, if we add play events to the previous example, the training of the
emerging artists model needs to be able to compose information about artists
across data served as a stream of events and columnar files.

As a result, many of the existing composability techniques that assume homo‐
geneous data, such as defining primary and foreign key relationships between
tables of a single schema, won’t work.

Ability to discover and learn what is relatable, decentrally
Before composing data across different data products, a data user needs to
discover what information across different data products is relatable. In our
previous example, the emerging artists data product’s developer needs to have
the knowledge that information about an artist is present and relatable across the
playlists, social media mentions, and artist profiles data products.

Traditionally, this is achieved through shared and centralized type systems or
schemas. In contrast, data mesh needs to adopt a distributed data modeling
approach.

Ability to seamlessly link relatable data
Once data users discover that the artist information is present in social media
mentions, playlists, and artist profiles, they need to be able to map and correlate
individual entities of the same artist across these data products. They need to
know which field(s) in each data product is representing the artist, and how they
can be mapped, for example, mapping a globally unique artist identifier that all
data products consistently use to identify artists.
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6 A snowflake schema is a multidimensional database schema that normalizes all entities into dimension tables
and defines their relationships in a separate table, a fact table that holds foreign keys to dimension tables. The
star schema is a special case of the snowflake schema.

Ability to relate data temporally
Data products serve data across two time dimensions, processing time and actual
time (or time windows). Inherently, times are the parameters of relating two data
entities. For example, when discovering the emerging artists, the code (or query)
transforming and correlating data across social media mentions and playlists
includes the actual times when mentions of the artist happened or the artist was
added to the playlist. The beauty of incorporating time by default is that all other
operations naturally become a function of time.

In order to discuss data mesh data composability design, let’s briefly look at some of
the existing approaches to data composability and assess how they align with data
mesh or not.

Traditional Approaches to Data Composability
Looking at the existing data technology landscape, we find a few notable approaches
to data composability. At the time of writing, these approaches don’t work for data
mesh as is, but there are interesting lessons to learn.

In all these approaches, composability is enabled through the explicit definition of
relationships and a shared type system. Using explicitly defined relationships, the
system infers what can be related to what other information and how:

Relations defined in fact tables
Relational schemas, particularly star and snowflake schemas6 adopted by data
warehousing systems, define explicit relations between different types of data.
For example, to access data for the emerging artist model training, a schema
defines three dimension tables for artist profiles, social media mentions, and
playlists. To compose and relate these data products for each artist, a fourth
table—a fact table—is created with foreign keys of artists pointing to each of
these tables.

Figure 13-5 shows the example of a fact table and its foreign key links to dimen‐
sion tables.

This method of data composability, while performant and flexible for running
queries in a centralized system, does not suit data mesh. It creates tight and frag‐
ile coupling between data products. Each data product’s schema cannot change
independently as they tightly link in the same schema to others. It assumes a
homogeneous data syntax (tabular) across data products, and internal storage
system identifiers create tight coupling to a specific implementation.
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Figure 13-5. Example of composability enabled via fact and dimension tables

Data mesh moves away from explicitly defining facts or joining tables.

Relations defined using a distributed type system
Another approach to discovering relatable data is using a type system. For exam‐
ple, GraphQL’s Apollo federation allows individual services to define a subgraph,
a schema for a set of data types that the services can in turn resolve and provide
data for. Each subgraph has its own schema and defines a set of types, objects,
and their properties. Each subgraph schema can refer to other types defined in
other subgraph schemas and can extend them. A gateway is then responsible for
composing different subgraphs. The gateway uses the federated type system to
correlate subgraphs and create a supergraph.
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The relationships are presented through nested (tree-like) types. For example, in
our example, the Playlist schema (type definition) will have a nested member
field representing the artist, whose type refers to the artist type defined in the
ArtistProfile schema:

// Artist Profile Schema
type ArtistProfile {
    artist: Artist
    active_since: Date
    ...
}
type Artist {
    id : ID!
    name : String
}
-----------------------------

// Playlist Schema
type Playlist {
    user: String
    tracks : [Tracks]
...
}
// Using a shared type, Artist, defined in the Artist Profiles schema
type Track {
    artist: Artist
    duration: Int
    ...
}

A distributed type system is suitable for data mesh as it respects loose coupling
and clear ownership of reusable types. However, it requires further refinement to
account for change of the types (schemas) independently, and the dimension of
time (versions of type), while allowing for type reuse.

Relations defined using hyperlinks and a centralized type system
Another method of defining relatable data is to use explicit HTTP hyperlinks
in schemas to shared data types, whose schemas are often available through a
centralized and shared schema registry, e.g., schema.org. The direct hyperlink to
schemas is often accompanied by direct hyperlinks to individual data instances
across different sets.

For example, this approach is adopted by Linked Data and the standardizations
that have been developed around the Semantic Web—a Web of Data at a global
scale. While Linked Data adoption hasn’t widely infiltrated enterprises’ analytical
data management, it’s an interesting source of inspiration as it has tried to
address distributed data linking and composability at a global scale, with an
emphasis on linking related data through web links.
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7 For more on developing ontologies, see Ontology Development 101.

The following is a simple (and incomplete) example in JSON-LD, demonstrating
data linking and schema links:

// Sample data provided in a (partial) JSON-LD format 
// Defining the terms used by referring to their explicit 
// definitions in a centralized schema
{
    "@context": {
        "@vocab": "https://schemas.daff.com/playlist#",
        "listeners": "https://schema.org/Person#",
        "artist": "https://schemas.daff.com/artist#",
        "album": "https://schemas.daff.com/album#",
        "track": "https://schemas.daff.com/track#",
        "track:id": {"@type": "@id"},
    },
    "@id": "https://daff.com/playlist/19378",
    "@type": "Playlist",
    "name": "Indie Playlist",
    "genre": ["Indie Rock"],
    "tracks": [{
        "@id": "https://daff.com/playlist/19378/1",
        "@type": "PlaylistElement",
        "artist:name": "Sonic Youth",
        "album:name": "Daydream Nation",
        "track:name": "Teen Age Riot",
        "track:id": "https://daff.com/tracks/39438434"
    },{
          "@id": "https://daff.com/playlist/19378/2",
          "@type": "PlaylistElement",
          "artist:name": "Thurston Moore",
          "album:name": "The Best Day",
          "track:name": "Speak to the Wild",
          "track:id": "https://daff.com/tracks/1275756"
      }
    ]
}

In this model, every single entity and data type has an explicitly defined schema,
identified with a schema URI, and it can link to other schemas by defined
ontologies and vocabularies. Ontologies are explicit and formal specifications of
terms in a domain and the relations among them and to other domains. For
example, a playlist contains tracks, which contain links to definitions of tracks
and artists. We are able to refer to these ontologies using the @context section of
this JSON-LD Document. Each of these individual concepts has a schema with a
unique URI that is often registered and available from a centralized repository of
schemas.7
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Additionally, every single identifiable entity has a unique URI. For example, each
artist in the artist profiles has a unique URI that other relatable entities
can link to it. This data linking creates a graph, where new relationships can be
inferred by traversing the existing relationships.

This model suits distributed data modeling and composability, but it requires
further refinement to avoid using shared centrally managed schemas that will be
difficult to maintain and change over time.

Compose Data Design
The previous section contrasted the existing composability approaches to data mesh.
With that, let’s summarize data mesh’s design of data composability and some of its
key design elements.

The design prioritizes loose coupling, between data products, and minimizing central‐
ized synchronization points. Data composability across the mesh relies on a distributed
type system (schemas), where each data product owns and controls the life cycle of its
own schema. One data product can use and refer to other data products’ schemas and
data and use the mappings from one data product to its neighboring ones to identify
what is relatable and how.

Note that at the time of writing, data mesh’s approach to composability is an area of
development.

Let’s look at the design elements a bit more closely:

Distributed type system
Each data product, independently, defines the semantic types of the data it serves.
Such a semantic definition, a schema, can be uniquely addressed by data users.
A data product’s semantic can refer to types defined in other data products’
semantics and extend them—semantic linking. If the referencing system uses the
internet addressing scheme of a URI, it simply enables a distributed type system
that extends the scope to multiple hosting environments and organizations.

It is likely that the mesh experience plane creates a centralized index of all types
defined by all data products on the mesh. The index is simply a read-only redi‐
rection mechanism to individual data products. It can continuously get updated
as new data products get created or existing ones are updated or deleted.

Data product global URI
Each data product has a unique address, ideally in the form of a URI, that can
be accessed programmatically within and across different data mesh instances.
This address is the root to access all other sharable properties of the data product,
such as its semantic schema, output ports, data entities, etc.
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Data entity URI
Entities that appear in multiple data products must be identified with globally
unique identifiers. The identifiers can be in the form of a URI to a particular
data product that can ultimately resolve the address to a particular entity. In the
example shared earlier, the concept of an “artist” is a polyseme that appears in
multiple data products, like playlists and artist profiles. A data product becomes
the source for generating these URIs. In this example, artist profiles allocates the
URI at the time of artist onboarding.

How the global identifier is allocated, and how a data product resolves that to
point to the information about a particular artist, requires sophisticated search
and pattern matching capabilities. For example, the social media mentions data
product finds certain names mentioned in Twitter comments. How it goes about
mapping those mentions to known artists and artist URIs is a sophisticated
pattern matching that looks at many different contextual parameters such as a
mention of albums, tracks, events, etc. The artist domain might provide an artist
resolution service for this purpose, using an ML model.

Machine optimization
Data product design is optimized for both humans and the organization as well
as the machine at the logical level. For example, using loosely coupled hyperlinks
over tightly coupled foreign key–primary key tabular relationships, data mesh
favors the organization’s optimization over the machine’s. For example, URIs can
remain the same while data products might change over time and get deployed to
a different location.

If the platform demands query speed optimization, federated query engines
can create internal indices to data served across different data products. These
internal indices, which are more tightly coupled, continuously get refreshed and
hidden away from data product developers. They are used internally by query
engines. An analogous scenario is the web indices that Google maintains travers‐
ing web links. As search users, we just deal with human-accessible URIs, while
Google search engines internally will use their optimized hashed indices.

In summary, at the logical level the representation of data is more sympathetic to
the users, and at the physical level it is more sympathetic to machine operation.

The human element
While it’s important that there are technical measures to support composition,
such as agreed-upon ID schemes and standardized data formats and modeling,
data composition also requires a human element. Data product owners need to
be aware of related data and be motivated to make it easier for data users to build
meaningful relationships. Like any product owner, they need to listen to their
customers’ needs and look for ways to facilitate compositions.
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Figure 13-6 shows the high-level components important to the design of data com‐
posability of data products.

Figure 13-6. Data product’s high-level components to design data composability

Recap
Data products are responsible for bridging the gap between the known and the
unknown so data users trust them. The discovery, understanding, trust, and explora‐
tion of data begins with the data product, with the intentional design of interfaces and
behaviors to share information about a data product’s data semantic, data formats,
usage documentations, statistical properties, expected quality, timeliness, and other
metrics. Once these basic functions and metadata sharing is built into each data
product, more sophisticated and ML-based discovery functions can be built for the
mesh of connected data products to search, browse, examine, and get meaning from
the mesh.
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To drive higher-order intelligence and knowledge from individual data products, data
users need to correlate and compose them. While the ability to stitch data together
is fairly simple in a centralized model, a schema can define all the entities and their
relationships. For data mesh this requires a few design considerations. These design
considerations stem from one main objective: define a system of distributed data
models that enables data composability that can rapidly evolve, without creating
tightly coupled or centralized models. I introduced design concepts such as a data
product’s ownership of a time-variant, sharable, and referenceable semantic data
model, semantic model linking, a global identification system to map data across
data products, and most importantly the responsibility of data product owners to
continuously look for opportunities to discover and create meaningful relationships
with other data products.

I hope that this chapter inspires future data mesh implementers to create an open
data modeling and composability language, agnostic to the underlying data storage
and formatting technology.
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CHAPTER 14

Design Managing, Governing,
and Observing Data

Data products are long-lived, and with that comes the need to manage their state and
govern, debug, and audit them over their lifetime.

This chapter concludes the design of the data product architecture, with a look at
the final three affordances that enable managing a data product over the course of its
lifetime.

In this chapter I discuss the design of how a data product affords:

• Data product developers to manage its life cycle from inception through many•
iterations of change, fixes, and evolution

• Being governed and in compliance with global policies•
• Being monitored, debugged, and audited•

Manage the Life Cycle
Never tell people how to do things. Tell them what to do and they will surprise you
with their ingenuity.

—George S. Patton

Data mesh’s promise of scale can be fulfilled only if the life cycle of a data product can
be managed autonomously, when a data product can be built, tested, deployed, and
run without friction and with limited impact on other data products. This promise
must remain true while there is interconnectivity between data products—through
their input and output data ports, sharing data, or schemas.
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In Chapter 10 we looked at the journey of a data product developer in managing
the life cycle of a data product with a focus on the use of platform services. It was
then evident that the majority of the work around provisioning and managing infra‐
structure resources or complex mechanisms such as managing change and revisions
is done by the underlying platform, the data product experience plane.

What remains to discuss here is the capabilities a data product provides to create and
evolve it.

Manage Life-Cycle Design
One of the key capabilities of a data product in its life-cycle management is to define
the specification of its target state—the resources it demands and the configurations
required to do its job. I call this specification a data product’s manifest. Data product
developers configure and maintain the data product manifest and present it to the
platform alongside other artifacts such as the data product’s transformation code,
tests, semantic definition, etc.

Figure 14-1 shows the interactions of managing the life cycle of a data product, with
a focus on the capability expected from the data product: providing its manifest and
other artifacts. A data product team develops two groups of artifacts: source artifacts
such as transformation code and semantic definitions, and the data quantum mani‐
fest, the declaration of the target (runtime) state of the data product and resources it
would require. The platform will use these artifacts to generate the build and runtime
artifacts, provision necessary resources, and run the data product container.

As discussed in Chapter 4, the declarative modeling (“Abstract complexity through
declarative modeling” on page 60) of a data product hides complexity. A data product
declares its desired target state in its manifest. The manifest can change and evolve
during the data product’s lifetime.

Using the manifest declaration, a data product developer can communicate various
facets and properties of a data product, in a standard fashion and ideally agnostic to
the underlying physical implementation. The developer can change the declaration
over time, create new revisions, and retire old ones.

The name data product manifest is inspired by other declarative
infrastructure provisioning and orchestration systems like Kuber‐
netes and Istio.
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Figure 14-1. High-level interactions to manage the life cycle of a data product

Let’s look a bit more closely at what a data product manifest can contain.

Data Product Manifest Components
Data mesh adopts a developer-experience-centric approach to the definition of the
manifest. This means the data product developer focuses on aspects of the data
product, rather than on the internals of the platform and how the platform physi‐
cally provisions the data product. Additionally, a manifest does not lock in the data
product to a physical implementation and ideally will be agnostic to the underlying
platform and, hence, portable.
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1 A trusted execution environment (TEE) that isolates an environment—processor, memory, and storage—with
a higher level of security than the main application’s execution context.

Table 14-1 lists a few examples of the components that a manifest defines.

Table 14-1. Data product manifest components

Manifest
component

Description

Data product’s URI Data product’s globally unique identifier. This was first introduced in Chapter 13 as the key
identifier (“Discover the Global URI” on page 236) to discover and address a data product.

 

Output ports Declaration of each output port, its supported mode of access, and any required guarantees. Using
this declaration, the platform provisions resources such as storage and stream topics.

 

Output port SLOs Declaration of what service level agreements each output port guarantees.  
Input ports Declaration of each input port and its structural characteristics, where the data comes from, and

how it’s retrieved.
 

Local policies Configuration of local policies such as locality, confidentiality, privacy, retention, etc.  
Source artifacts Description of what other source artifacts are part of the data product, including its transformation

code and input ports queries.
 

Over time, the design of the manifest language should allow for extensibility and
addition of new facets over time, as the platform evolves to support new types of
resources, or data products’ dependencies and capabilities evolve.

The aspects of a data product that are best defined (imperatively) as code are not
included here. For example, the data transformation logic, the input port queries,
output port custom adapters, and code to enforce custom aspects of the policies are
best implemented as code and maintained as data product source artifacts.

Govern Data
I think Computation is destined to be the defining idea of our future.

—Stephen Wolfram

Data mesh’s position on governance and compliance with policies, introduced in
Chapter 5 is to implement the policies that govern the data products as code and
embed them in each and every data product. Embedded policies are validated and
imposed at the right time through a data product’s life cycle, and right in the flow of
data. For example, if the policy demands in-memory encryption of certain types of
data, articulation of this policy as code, embedded in the data product, allows the data
product to test and enforce this policy at many different points in its life cycle: enforc‐
ing the policy at build and deploy time by validating that data product has access to a
secure enclave,1 using the secure enclave during the access and transformation of the
data, and so on.
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2 In object-oriented programming, the decorator pattern is a design pattern that allows behavior to be added
to an individual object over time. Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented
Software, 1st ed., (Boston, MA: Addison-Wesley Professional, 1994).

The idea of treating policies as code means that the policies are versioned, tested and
executed, and observed like any other code. Policies, similar to data and data schema,
are time-variant and change over time.

Govern Data Design
In Chapter 9 I introduced a data product’s architectural components that enable
configuration and execution of the policies embedded in each and every data product;
I introduced the concept of a control port (“Control Port” on page 167), a set of inter‐
faces that allow configuration of policies (e.g., setting access control rules for a data
product) and calling high-privilege governance functions (e.g., executing the right to
be forgotten and performing other data fixes). The concept of a data product sidecar
(“Data Product Sidecar” on page 165) was introduced as a homogeneous execution
engine accompanying all data products, to carry out the cross-functional needs of
all data products such as policy execution. A sidecar is simply a logical placeholder
for potentially multiple execution mechanisms for different policies, incrementally
decorating2 the data product over time. Lastly, I introduced the concept of the data
product container (“Data Product Computational Container” on page 166) as a way of
encapsulating the runtime instantiation of a data product’s resources.

Since governance is a global concern and policies need to be applied to data products
consistently, I proposed that the platform provide these components, container, side‐
car, etc. These components work in collaboration with the mesh experience plane.
The mesh experience plane provides capabilities for governance processes such as
configuring policies and the right to be forgotten globally across the mesh, for all data
products. This is depicted in Figure 14-2.

In addition to configuration and execution, governance of policies requires observ‐
ability of their state of adoption. I will cover the observability aspect in the next
section.

Policies can be domain-specific or agnostic. For example, a data product serving
healthcare domain data must adhere to HIPAA—the Health Insurance Portability
and Accountability Act in the United States—to assure the security and privacy of
patients’ health records. Domain-agnostically, all data products must adhere to their
guaranteed data accuracy levels.

Whether policies are domain-specific or domain-agnostic, here are a few design
characteristics that underpin a successful implementation of data mesh governance.
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Figure 14-2. High-level design of embedded policies as code

Standardize Policies
It’s critical to have a consistent way to express, configure, and enforce policies for all
data products across the mesh. Policies are an element of every data product and part
of its interface—e.g., control ports. Hence, standardizing what they are and how they
are expressed and enforced will remove unnecessary complexity.

Let’s look at a simple policy: access control, how we define and enforce who can access
what data. The basic construct required to get access control work is the notion
of identity of data users: how we confidently identify users—humans or systems—
whether they are on the mesh and off the mesh. If we can’t have a standardized way
of specifying and recognizing identity, it’s almost impossible to get data sharing across
multiple data products. The more diversified the approach in designing identity is,
the higher the friction and cost of sharing data. While this simple example must seem
obvious and intuitive, you might be surprised that data management systems have
not yet agreed on standardized identity and access control. Many storage and data
management technologies have their own proprietary way of identifying the accounts
of consumers and defining and enforcing their access control.
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3 Examples include GDPR (EU), CCPA (CA, USA), and Australia’s Privacy Principles (Australia).
4 ISO/IEC 27701:2019, Security techniques.

Here are a few examples of policies that benefit greatly from standardization.

Encryption
Depending on a data product’s security policy, data is encrypted in transit, at rest,
and more recently in memory with the progress of confidential computing. Today,
encryption methods are fairly well standardized, naturally because there are two
parties or more involved in encryption and decryption and they both need to agree
on the protocol. Data mesh design can extend this standardization by including the
expression of what is encrypted, at what level and with what method, in a data
product’s discovery interfaces and schemas.

Access control and identity
In a distributed architecture like data mesh to share data across the boundaries of
a single platform, or an organization, there must be universal agreement in how we
define and verify identity and access control rules. Most importantly, how do we do
this in a technology-agnostic way? Independent of where data is stored or what cloud
provider manages it, we need a standardized way to identify data users and manage
their access.

While we are reaching agreements around identity in accessing operational APIs and
services, we are far from that in analytical data access. In the operational world,
the movement toward distributed APIs led to the standardization of identity—end
user applications or other services—with the OpenID Connect protocol, usage of
JSON Web Token (JWT) validation, X.509 certificates for services, and more recent
standardization protocols such as SPIFFE. The motivation of API sharing has been a
big driver for establishing identity standards.

In the analytical data space, data remains locked up by technology vendors. There
are not many incentives to share data across vendors, which results in lack of interest
in creating access control standardization. I hope that data mesh’s main motivation,
sharing data beyond a technology silo, becomes a catalyst to change this.

Privacy and consent
The recent decade’s regional privacy laws3 aim to protect personally identifiable infor‐
mation of individuals, whose data is being captured and controlled by organizations.
These laws have led to some level of standardization,4 mostly in operating models and
processes involved in managing data. However, due to the lack of standardization and
incentives in data sharing, we find very limited effort behind the standardization of
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privacy and consent. We are far from a consistent way of recognizing what data must
be protected as private information, and how data owners’ consent is expressed and
shared along with their data, how they can consistently grant or revoke consent in
how their data being used, and most importantly how transparently they can view the
usage of their data.

As a distributed data sharing and management architecture, data mesh demands
a consistent way of managing privacy and consent across all data products. The
consents are a type of computational policy that each data product can embed.

Data and Policy Integration
The concept of a data product as an architecture quantum attempts to integrate data,
code, and policy as one maintainable unit. This self-contained unit liberates us from
many governance issues, including struggling to manage privacy and consent outside
of the bounds of a specific technical storage. For example, the separation of consent
policy from data makes it difficult to track or even respect the consent of the user,
once the data is shared beyond the boundary of a particular technical system where
consent is being managed. Data mesh links the policy and its configuration with the
data it is trying to govern.

Linking Policies
Similarly to linking to data semantics and data entities across different data products,
as discussed in Chapter 13, data products’ policies can link to each other across
data products so that when data leaves a particular data product to get processed
by others, it maintains its link to the original policy that governs it. If the data
transformation morphs it in a way that it no longer has a link to the original data and
schema, the policy link is naturally broken too. Policy linking is helpful to multiple
data products to retain access to the latest state of the policy, as maintained by the
source data product.

This is an area that requires further development; however, data mesh enables the
foundation to build distributed and ever-present policy sharing along with the data, a
data quantum.

Observe, Debug, and Audit
Don’t control, but observe.

—Gregor Hohpe

Let’s look at the final and indispensable capability of a data product: observability.
Data product observability is the ability to infer the internal state of data prod‐
ucts, and consequently the mesh, by observing their external outputs. Observability
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intends to answer questions such as: Are data products performing their jobs suc‐
cessfully? Are they meeting their guarantees? Are data products conforming to the
policies? Does processed data meet its statistical properties, volume, frequencies,
ranges, distribution, etc.? Has there been any undesired access to a data product?
Have there been any issues with data products, and if so what is the root cause?
Are there any anticipated problems on the horizon? Observability answers these
questions at the level of individual data products and their collection as a mesh.

The distributed architecture of data mesh—a loosely coupled mesh of data products,
linked with each other to share their data, data models, and policies—creates com‐
plexity in observability. There are many moving parts that can each fail, there is a
large number of data products and interconnections to monitor, and failures may go
unnoticed. In a monolithic and tightly coupled system, a single failure often results
in the failure of an overall system, which is easy to detect. In data mesh, the loose
coupling of data products limits the failures as locally as possible; hence, it requires
automated and comprehensive observability to detect and debug such failures.

The use cases for data product observability can be summarized as follows:

Monitor the operational health of the mesh
Are data products receiving the data they expect, running their transformations
successfully, and serving their data in compliance with their SLO guarantees and
with the expected statistical properties? Observability detects if there are any
interruptions to these processes, automatically self-heals and fixes the issues, and
notifies the relevant people.

Debug and perform postmortem analysis
When something goes wrong, when data is not matching our expectation, or
there is an error in receiving, transforming, or serving data, data product observ‐
ability helps data product developers and owners to assess the impact of the
failure and discover the root cause.

Perform audits
Data products enable third parties to perform audits—regulatory, risk, compli‐
ance, or security; for example, a service could continuously and automatically
audit the access logs for security assurance—who is accessing what data, when,
and how.

Understand data lineage
Data lineage—understanding where data has originated from and what transfor‐
mations it has gone through—remains an element of understanding and trusting
data and is necessary for debugging issues with data. This is particularly helpful
in machine learning where the quality of the model largely depends on the
quality of the training data. Data scientists demanding a deeper understanding
and trust in the training data often evaluate the data lineage. The lineage coupled
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with contextual (runtime) metrics about data and the model are must-haves to
understand and spot the real issues underlying an ML model deviation.

Observability Design
Data mesh observability begins with each data product, by design, sharing its external
output and reporting its status. Each data product shares its logs, traces, and metrics
while consuming, transforming, and sharing data. Building on these outputs, the
mesh experience plane can then observe and monitor the mesh-level status.

The role of a data product in its observability is the key difference between the
existing data observability and data mesh. Existing approaches monitor the state of
data by an external party—the data team—inspecting the data after the fact in a lake
or warehouse.

In data mesh, many of these after-the-fact data checks become part of the implemen‐
tation of the data product’s transformation, the tests and controls, articulated as
computational expectations of data.

Let’s discuss a few notable design characteristics of how data products enable
observability.

Observable outputs
In the operational plane, distributed architectures like microservices have converged
on three kinds of external output that collectively enable observability: logs, traces,
and metrics. These are often referred to as observability pillars:

Logs
Logs are immutable, timestamped, and often structured events that are produced
as a result of processing and the execution of a particular task. They are often
a great source of information in debugging and root cause analysis. In the case
of a data product, the act of consuming, validating, transforming, and serving
data can produce logs. For example, the artist profiles data product’s log can
capture when new data is received by the input port from the artist onboarding
service, a summary of steps taken to productionize the data through a series
of transformations, and when data for a particular processing time becomes
available to data users.

For logs to be useful and secure, it is important to standardize the structure,
define the mandatory elements that all logs must consistently provide, and imple‐
ment the right level of privacy measures to prevent overexposing information
in the logs. This will allow for automated and ML-based analysis of the logs for
insights on the operational health of the mesh. Collecting logs without setting
up automated analysis is often futile, similar to collecting any other kinds of
large-volume data without the ability to analyze it.
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Traces
Traces are records of causally related distributed events. The trace records are
structured in a way that can encode an end-to-end flow of actions and events.
Traces, similarly to logs, are immutable, timestamped, and structured events. In
the analytical data plane, the main usage of a trace is to create data lineage: how
data flows through the data products and how data gets transformed by each
product. Similar to logs, data products adopt a single standard to model the
structure of their traces.

Note that traces in the operational plane often capture a tree of calls and transac‐
tions that get executed as a consequence of a request. For example, a web request
to fetch a list of artists may result in calls into various microservices. Traces in
data mesh represent the flow of data or data requests through a graph of input
and output ports—from the source data product to the origin of the data to the
final data consumers.

Metrics
Metrics are objectively quantifiable parameters that continue to communicate
build-time and runtime characteristics of data products. In “Establish Trust with
Data Guarantees” on page 238 in Chapter 13, I introduced a few categories of
metrics that each data product continuously shares, e.g., timeline, completeness,
accuracy, etc. Metrics similar to the logs and traces are immutable, timestamped
(often numerical) events that can be tracked over a period of time.

These pillars are a great starting point for adapting a distributed observability model
to data products. In Chapter 9, I introduced the observability APIs (“Data Discovery
and Observability APIs” on page 159) as a standard interface for data products to
share their external observability outputs, shown in Figure 14-3.

Figure 14-3. Three types of data product outputs shared by observability APIs
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5 At the time of writing, OpenLineage is in early development and can be mapped to data products’ traces.

Traceability across operational and data planes
Many data products originate from operational systems. Specifically, source-aligned
data products get their data from their collaborating operational system. For example,
the artist profiles data product begins its existence by the act of an artist onboarding
using the artist onboarding microservice application.

Hence, to provide a complete picture of data lineage, or the ability to debug issues
and perform root cause analysis, the observability of data must extend beyond the
data products to the operational systems. Observability data must be traceable to the
operational systems.

Structured and standardized observability data
To facilitate creation of higher-order intelligence and insights from data products’
observability data, the metrics, logs, and traces must have a structured format and
ideally be standardized. They must model specific fields such as the data product’s
global URI, actual and processing timestamps, output port URIs, etc. Any structured
information can have an unstructured element such as plain text for free-format
messages. At the time of writing there is a need to create open industry standards for
data product metrics, logs, and traces.5

Domain-oriented observability data
One way to scale and extend observability over time is to apply domain-oriented
design to the observability itself, e.g., create domains of observability such as data
quality, data shape, data conformance, etc.

One can imagine that the mesh-level observability information can itself be managed
as data products; e.g., the data quality data product can provide metrics and a
complementary set of insights on the data quality of the mesh.

I have always felt uneasy with the generalization of all data about
data into a catchall bucket of metadata. This approach removes
intentionality in designing different classes of metadata. In fact, in
my writing I have refrained from using the term metadata as much
as possible. It’s my personal belief that all data is data, there are
correlations and relationships between different types of data, and
all data can be designed as domain concepts, ranging from business
domains (e.g., artist profiles) to observability domains (e.g., data
quality metrics). The reusable concept of the data product caters
to all analytical data.
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Recap
Man muss immer umkehren. (One must invert, always invert.)

—Carl Jacobi

If I could leave you with one takeaway from this chapter, it would be to invert your
perspective on whose responsibility it is to manage, govern, and observe data; shift
the responsibility from an external party getting engaged after the fact to the data
product itself.

Data paired with computational capabilities and policies, in the quantum of a data
product, can afford its users with basic capabilities: managing its life cycle with the
help of a manifest, governing its data with execution of its embedded policies, and
observing its state with its logs, metrics, and trace outputs.

There is a common thread present in the design characteristics of all data product
capabilities introduced in this chapter:

Standardization
Standardization of the data product’s interfaces for mesh-level interoperability,
e.g., adopting a common structure for logs

Emergence
Emergence of mesh-level capabilities from individual data products, e.g., discov‐
ering lineage by observing each data product’s input, transformation, and output
traces

Agency
Agency of each data product to share its observability outputs, error logs, met‐
rics, etc.

Extensibility
So that new competencies over time can be enabled over time, e.g., adhering to
new policies

This chapter concludes the discussion of data mesh with regard to the capabilities
and affordances of data products. Next, I will zoom out to the big picture of strategy,
execution, and organizational change toward data mesh.
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PART V

How to Get Started

A journey of a thousand miles begins with a single step.
—Lao Tzu

We have both made it to the last part of this book. Well done!

Are you considering adopting data mesh for your organization or helping others
to do so? Are you in a position to influence, lead, or manage the execution of
data mesh? Do you need some help on how to approach such a transformation
organizationally and where to get started?

If you answered yes to these questions, this part is for you.

I assume that you have a solid understanding of data mesh foundational principles
from Part I and understand the motivation and objectives of data mesh from Part II.

Scope
Data mesh is an element of a data strategy that fosters a data-driven organization to
get value from data at scale.

Execution of this strategy has multiple facets. It affects the teams, their accountability
structure, and delineation of responsibilities between domains and platform teams. It
influences the culture, how organizations value and measure their data-oriented suc‐
cess. It changes the operating model and how local and global decisions around data
availability, security, and interoperability are made. It introduces a new architecture
that supports a decentralized model of data sharing.



In this part of the book, I describe a high-level approach to start and guide the execu‐
tion of this multifaceted change. In Chapter 15, “Strategy and Execution”, I introduce
an evolutionary approach to adopt data mesh incrementally, generating value from
an increasing number of data products while maturing the platform capabilities. In
Chapter 16, “Organization and Culture”, I cover some of the key changes to teams,
roles, and performance metrics to create long-term ownership of data products and
peer-to-peer data sharing.

At the time of writing this book, we are in the early years of adopting data mesh
and beginning to create a decentralized organizational model where data sharing and
analytics are becoming embedded into business-technology domains.

The approach suggested in these chapters is the adaptation of an evolutionary and
large-scale transformation model that has been successfully applied in scenarios such
as building domain-oriented operational teams and digital platforms.

I will share my experience of blockers and enablers specific to data mesh. This is just
a starting point, and we have years ahead of us to refine a transformation approach
unique to data mesh.



1 “Now” is when this book is published and implies an early state of maturity for technologies that natively
support data mesh.

CHAPTER 15

Strategy and Execution

The essence of strategy is choosing to perform activities differently than rivals do.
—Michael E. Porter

Is your organization adopting a data-oriented strategy? Is it planning to offer distinct
value to its customers and partners using data and insights? Does your organization
have a vision to use data to perform a different set of activities or its current activities
differently? Is your organization curious about data mesh as a foundation for imple‐
menting this strategy?

If you answered yes to these questions, this chapter is for you.

In this chapter I describe the relationship between data mesh and an overall data
strategy, and how to approach its execution through an iterative, value-driven, and
evolutionary approach.

But first, a quick self-assessment.

Should You Adopt Data Mesh Today?
Before you proceed to the rest of this chapter, you may ask yourself, is data mesh the
right choice for my organization? Or more importantly, is data mesh the right choice
now?1

Figure 15-1 depicts my perspective on these questions. I suggest that organizations
that fall in the colored section of the spider graph—scoring medium or high on each
of the assessment axes—are best positioned to adopt data mesh successfully at this
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point in time. You can use the following criteria to self-assess whether data mesh is
the right choice for your organization now.

Figure 15-1. Criteria to self-assess readiness for data mesh adoption

Organizational complexity
Data mesh is a solution for organizations that experience scale and complexity,
where existing data warehouse or lake solutions have become blockers in their
ability to get value from data at scale and across many functions of their business,
in a timely fashion and with less friction.

If your organization has not reached such a level of complexity and the existing
data and analytics architectures meet your needs, data mesh will not offer you
much value.

Organizations with a large proliferation of data sources and use cases that
score moderate or high on data complexity benefit from data mesh. For exam‐
ple, enterprises or scaleups—fast-growing startups—whose business encapsulates
many different data domains and a large proliferation of data types collected
from many sources and that have a business strategic differentiator heavily
dependent on ML and analytical use cases are great candidates for data mesh.
Enterprises or scaleups in industries such as retail, banking and finance, insur‐
ance, and large tech services fall into this category.
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For example, consider a healthcare provider or payer. There is an inherent com‐
plexity in the diversity of data. It ranges from clinical visits to patient profiles,
lab results, pharmaceuticals, and clinical claims. Each of these categories of data
can be sourced from multiple parties in an ecosystem of business domains or
independent organizations, hospitals, pharmacies, clinics, labs, etc. The data is
being used for many use cases: optimized and personalized care models, intelli‐
gent insurance authorization, and value-based care.

The primary criteria for adopting data mesh are the intrinsic business complexity
and proliferation of data sources and data use cases.

Data-oriented strategy
Data mesh is a solution for an organization planning to get value from data
at scale. It requires the commitment of product teams and business units to
imagine using intelligent decision making and actions in their applications and
services. Such a commitment is possible only when the organization identifies
data enabling ML and analytics as a strategic differentiator.

A data-oriented strategy then translates down to data-driven applications and
services, which then turns into teams’ commitment to data.

Without a strategic vision around data usage, it would be difficult to motivate
domain teams and business domains to take on the extra responsibility of data
sharing.

Executive support
Data mesh introduces change, and with that comes resistance to change. Any
change of such scale experiences detractors and blockers. It will be necessary to
make tough decisions between the progress of the platform versus building point
solutions to meet a deadline. It demands motivating the organization to change
how people work.

All this calls for executive support and top-down engagement of leaders. In my
experience, the most successful data mesh implementations have had the backing
of C-level executives.

Data technology at core
Implementing data mesh builds on a new relationship between technology and
business. It builds on the pervasive application of data in each business domain.
Organizations that have data technology at their core use data and AI as a
competitive advantage, as the means to expand and reshape their business and
not merely as an enabler.

Such organizations have the desire and ability to build and create the technology
needed to embed data sharing and consumption at the core of each business
function.
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In contrast, organizations that see technology as a supporter of the business and
not at the core often delegate and externalize technology capabilities to external
vendors and expect to buy and plug in a ready-made solution for their business
needs. Such organizations are not yet positioned to adopt data mesh.

Early adopter
At the time of writing this book, data mesh is enjoying its early years of adoption
by innovators and lead adopters. Early adopters of new innovations must have
certain characteristics: they are venturesome opinion leaders2 in their industry.
They have an appetite for adopting emerging technologies, such as data mesh.

Early adopters of a novel approach, particularly one as multidimensional and
pervasive as data mesh, demand a spirit of experimentation, taking risks, failing
fast, learning, and evolving. Companies that adopt data mesh at this point in time
must be willing to begin from the first principles, adapt them to their context,
and learn and evolve.

On the contrary, organizations that don’t take risks and like to only adopt well-
tested, refined, and prescribed playbooks and fall into the late adopter category
may need to just wait for some time.

Modern engineering
Data mesh builds on a foundation grounded in modern software engineering
practices. Continuous and automated delivery of software, DevOps practices,
distributed architecture, computational policies, and availability of modern data
storage and processing stacks—on private or public clouds. Without solid engi‐
neering practices and access to open and modern data tooling, it will be challeng‐
ing to bootstrap data mesh from the ground up. Data mesh shares prerequisites
for microservices3 and requires modern data and analytics technology and
practices.

Additionally, data mesh works with modern technology stacks that are API
driven and easy to integrate and aim to enable many smaller teams, as opposed to
one large, centralized team. Technologies that enforce centralized data modeling,
centralized control of data, and centralized storage of data don’t lend themselves
to a successful data mesh implementation. They become a bottleneck and conflict
with the distributed nature of data mesh.

Domain-oriented organization
Data mesh assumes that the adopters either are modern digital businesses with
a level of technology and business alignment or are on the journey toward it. It
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assumes that organizations are designed based on their business domains, where
each business domain has dedicated technical teams who build and support
the digital assets and products that serve the business domain. It assumes that
technology and business teams are in close collaboration to use technology to
enable, reshape, and expand the business.

For example, a modern bank has dedicated technology groups for digital core
banking, digital processing of loans, digital commercial and personal banking,
digital credit and risk, etc. There is a close alignment between technology, techni‐
cal teams, and the business domains.

In contrast, organizations with a centralized IT unit that shares people
(resources) based on projects across all business units, without continuous and
long-term ownership of technical assets for each business domain, are not a good
fit for data mesh.

Domain-oriented data sharing scales only if there is a domain-oriented tech and
business alignment in place.

Long-term commitment
As you will see in upcoming chapters, the adoption of data mesh is a transforma‐
tion and a journey. While it can be started with a limited scope and an organi‐
zational footprint of a small number of domains, the benefits are compounded
when exploited at scale. Hence, you need to be able to create an organizational
commitment to the vision and embark on a transformation journey.

Data mesh cannot be implemented as one or two one-off projects.

If you see yourself aligned with the previous criteria, let’s go ahead and look at how to
execute a data strategy using data mesh.

Data Mesh as an Element of Data Strategy
To understand how data mesh fits into a larger data strategy, let’s look at our hypo‐
thetical company, Daff, Inc.

Daff ’s data strategy is to create an intelligent platform that connects artists and listen‐
ers through an immersive artistic experience. This experience is continuously and
rapidly improved using data and ML embedded in each and every interaction of the
listeners and artists on the platform. This implies capturing data from every single
touchpoint on the platform and augmenting every platform feature using ML derived
from the engagement data. For example, the platform’s better playlist predictions lead
to more listeners with higher engagement, which then leads to more data and hence
better predictions—creating a positive self-reinforcing loop for the business.
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Daff ’s ambitious strategy is executed through an organizational-wide data mesh
implementation, where the nodes on the mesh can represent data collected and
curated from various activities on their platform and the intelligence inferred by
machine learning models trained on such data.

Figure 15-2 shows the relationship between the data strategy and data mesh.

Figure 15-2. The big picture. connecting data mesh execution to the overall data strategy
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As Figure 15-2 shows, data strategy drives the execution of data mesh. Let’s explore
the diagram top down and go through the implementation of data mesh from strat‐
egy to the platform, with continuous feedback loops.

Data strategy
Data strategy defines how uniquely a company takes advantage of data and
creates a roadmap of strategic initiatives.

For example, Daff ’s strategy is based on partnering every content producer’s,
artist’s, and listener’s experience with data and ML.

Strategic business initiatives and use cases
Following the strategy, a set of business initiatives, use cases, and experiments are
defined to utilize data and ML.

One such business initiative is the curation and presentation of ML-based con‐
tent—music, podcasts, radio—to the listener. The ML models exploit multido‐
main data such as the user’s context—location, time of day, latest activities, and
the user’s preferences matched with the content’s profile.

These initiatives then lead to the implementation of one or multiple intelligent
user touchpoints and applications.

Intelligent applications and touchpoints
Ultimately the user’s experience needs to be enhanced through their touchpoints
and the applications they use. Each intelligent business initiative can lead to the
augmentation of existing or new user applications with ML.

For example, the initiative of “Intelligently curate and present context-aware
and personalized content” can lead to changes to multiple applications. It can
be offered with a new application such as “Tell me about my preferences” that
helps users grasp a deeper understanding of their preferences matched with
music profiles and other environmental factors. It can lead to creation of multiple
playlists through the “Personalized playlist browser” app that each provide a
playlist intelligently curated based on calendar events and holidays, based on the
day of the week, based on different genres, based on time of day, etc. It can lead
to the creation of a new intelligent exploration tool, “Similar music explorer,”
that allows the user to traverse a graph of related music content, based on their
profiling and user preferences.

Development of these intelligent applications leads to the identification and
development of data products that provide the necessary data and insights.

Data products
One of the core components of data mesh is a set of interconnected data prod‐
ucts. Intelligent applications drive the identification and development of the data
products on the mesh. While real-world applications initiate the creation of data
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products, not all data products get directly used by them. Consumer-aligned data
products are directly used by the applications, while aggregate or source-aligned
ones are likely used by those data products. Over time, a mesh of data products
gets created that get reused for new and novel intelligent applications.

For example, the “Personalized playlist browser” app depends on various recom‐
mended playlist data products, such as the monday playlists, sunday morning
playlists, or focus playlists data products that in turn rely on music profiles data
product, among others.

Multiplane platform
The creation and consumption of data products and intelligent applications
drive prioritization and development of platform capabilities. As the number and
diversity of the data products, data users, and providers grow on the mesh, so do
the features and maturity of the platform.

The platform features are developed in parallel and sometimes ahead of the data
product and intelligent application development. However, the platform value
is demonstrated and measured based on its usage through the frictionless and
reliable delivery of data products.

Over time, platform features and services create a foundation for reuse in the
delivery of new data products.

Organizational alignment
As the organization executes its data strategy, it implements the organizational
and social aspect of the data mesh.

The formation of a federated governance operating model, formation of cross-
functional—business, dev, data, ops—teams, and establishment of the data prod‐
uct ownership role are all organizational aspects of data mesh that require the
care and attention of the change management discipline.

Organizational alignment happens concurrently and as part of the delivery and
execution of data business initiatives, however with explicit intention and organi‐
zational planning.

I will cover these aspects in Chapter 16.

Business-driven, iterative, end-to-end, and evolutionary execution
The overall process described in the preceding establishes the high-level steps
of the execution. However, these steps are executed iteratively, with built-in
feedback and monitoring so that the organization can measure and monitor
its progress toward the target state in an evolutionary fashion. Iterations continu‐
ously deliver value and execute all the steps involved end to end. See the section
“Data Mesh Execution Framework” on page 279 for more on this.
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In the rest of this chapter, I share some practical guidelines to use this high-level
execution framework. In the next chapter, I cover the cultural and organizational
aspect of data mesh implementation.

Data Mesh Execution Framework
Brilliant strategy puts you on the competitive map, but only a solid execution keeps
you there.

—Gary L. Neilson, Karla L. Martin, and Elizabeth Powers, “The Secrets to Success‐
ful Strategy Execution” (Harvard Business Review)

To get started with a data mesh execution, we first need to acknowledge that it’s
likely going to create transformational change—culture, organizational structure, and
technology. I understand the word transformation carries quite a bit of weight, as if
we need a great deal of potential energy to get it into motion. What I want to share
with you here is a high-level framework that can help you get started. This framework
helps you move forward and make progress one iteration at a time, delivering value
and outcomes while maturing the foundation—the platform, the policies, and the
operating mode. It allows using the kinetic energy of moving forward to keep going,
instead of delaying the execution to gather all the will and energy needed for a big
bang push to change.

Figure 15-3 shows the high-level elements of the data mesh execution framework,
business-driven, end to end, iterative, and evolutionary.

Figure 15-3. A high-level data mesh execution framework
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4 Colin Bryan and Bill Carr, Working Backwards, (New York: St. Martin’s Press, 2021), 98.

Let’s look into how these aspects impact the activities, outcomes, and measurements
involved in executing a data mesh implementation.

Business-Driven Execution
Data mesh is a component of a larger data strategy, and as demonstrated in Fig‐
ure 15-2, its execution is driven by the strategic business cases and user scenarios that
require ML or analytics, which then drive the identification and delivery of the data
products and the components of the platform to build, manage, and consume them.

This flows similar to how Amazon approaches building their major products and
initiatives. “Start with the customer and work backwards—harder than it sounds, but
a clear path to innovating and delighting customers. A useful Working Backwards
tool: writing the press release and FAQ before you build the product.”4

While there are many benefits to this approach, a few challenges need to be managed.

Benefits of business-driven execution
These are a few key benefits to a business-driven execution:

Continuous delivery and demonstration of value and outcome
Showing results during a long transformation has a positive impact on morale,
getting buy-in, increased commitment, and assuring continuation of investment.

A business-driven execution is continuously delivering business value, though
initially the pace might be slower or the scope of impact might be smaller. As the
platform capabilities and operating model mature, the pace and scope improve.

Rapid feedback from the consumers
Engaging with the users—internal and external—has a positive influence on the
platform and data products’ usability. The organization builds and evolves what
is needed based on the feedback of the business, data, and platform consumers.
The feedback is incorporated earlier and iteratively.

Reducing waste
Developing data products and platforms based on real business use cases leads to
building what is actually needed when it is needed. The technology investments
focus on delivering value to the business, sustainably, in contrast to merely
following a build plan.
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Challenges of business-driven execution
There are a few challenges to this approach that need to be closely managed:

Building point-in-time solutions
A narrow focus on delivering solutions to a single business use case at a time may
lead to developing platform capabilities and data products that are not extensible
to meet future use cases. This is a possible negative outcome of business-case-
driven development. If we only focus on a particular business application, and
not beyond that, we likely end up building point solutions narrowly designed for
one particular use case, which do not extend to be reused and evolved for future
use cases.

This is particularly problematic for platform services as well as source-aligned and
aggregate data products. The purpose of the platform services and data products
on the mesh is to serve and enable a wide set of use cases.

How to remediate point-in-time solution building?

Product thinking is the key to finding the right balance between point-in-time
solutioning and the YAGNI principle—building something ahead of time when
“You Aren’t Gonna Need It.” Applying product ownership techniques to the
platform services and the data products can deliver value for customers today,
with an eye on the horizon for future and upcoming use cases. Data product
owners understand the unbounded nature of analytical use cases. Future use
cases that we are likely unaware of today will need to reach into past data to
discover patterns and trends. Hence, data products need to capture data beyond
the exact need of known use cases. This is particularly true for source-aligned
data products (“Source-Aligned Domain Data” on page 21), where they need to
capture the reality of the business and the facts as closely as possible and as they
occur.

Delivering to tight business deadlines
A business-driven execution subjects the development of platform and data
products to business deadlines. Business deadlines are often hard to change
as they require coordination across many parties inside the organization and
sometimes with partners and customers outside. To meet these deadlines, the
lower layers of the stack such the platform services can incur technical debt,
cutting corners in quality in order to meet the deadline of the business case.
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This is not a new phenomenon in software development. We almost never
build software in a vacuum and almost always are faced with external deadlines,
drivers, and unforeseen environmental circumstances that change the priority of
features and how they are built.

How to remediate incurring technical debt in the face of deadlines?

Long-term product ownership of the platform and data products and evergreen
engineering practices can assure that there is a continuous improvement process
in place to address technical debts that may occur along with new feature deliv‐
ery. The long-standing platform and data product teams have the knowledge
and incentives to maintain their systems and data beyond a particular project
delivery. This balances between the extensibility and long-term design of the
platform and short-term project delivery. In short, the essence of the product
mode of working strikes a balance between short-term technical debt to meet
deadlines versus long-term product quality.

For example, long-term product owners of platform services or data products
know that getting the APIs and interfaces right is a priority, even when in a pinch
for time. Often it is easier to fix the tech debt incurred in implementation details
than make changes to the interfaces. API changes likely have a higher cost of
change as they impact a number of consumers.

Project-based budgeting
Delivery of business initiatives is often organized as time-bound projects with a
fixed allocated budget. Executing a data mesh implementation through business
initiatives can have a negative impact on budget and resource allocation for
long-standing digital components of the mesh—data products and the platform.

When the budget is allocated to a time-bound business initiative, it becomes the
sole source of investment for building the platform services or data products.
As a result, their long-term ownership, continuous improvement, and maturity
suffers.

How to remediate project-based budgeting?

Business projects are great vehicles for execution of the long-standing platform
and data products. But they cannot be their sole funding mechanism. The plat‐
form and data products need to have their own allocated long-term resources
and budget.

The project mentality is at odds with platform and product thinking where
product teams are never done. They continue to mature, maintain, and evolve
the product in the face of new requirements and support many projects.
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Guidelines for business-driven execution
Here are a few guidelines and practices when starting with a business-driven data
mesh execution:

Start with complementary use cases
Picking a couple of complementary use cases at a time, over a single use, avoids
building point solutions. Building the reusable components of the mesh through
complementary and concurrent use cases can be a forcing function to avoid the
pitfall of point solutioning.

For example, the early use cases can be taken from different yet complementary
areas such as analytics and reporting, complementing ML-based solutions. This
forces the design of the data product to cater to two different modes of access,
ML and reporting, over solutioning for one mode in a way that is not extensible
to others.

Know and prioritize the data consumer and provider personas
Focusing on both types of data mesh user personas—data providers and data
users—helps prioritize the platform capabilities fairly and for the most end-to-
end impact.

Get to know the people involved in building the intelligent solutions, the appli‐
cation developers, data product providers, and data product consumers. Under‐
stand their native tooling and skill, and then prioritize the work based on this
information.

For example, an early project is ideally done by the population of developers
who are considered advanced users of the platform. They can work with missing
features and be part of creating the required platform features.

In my experience, many data mesh executions begin with an emphasis on data
product creation. As a result, the data consumer experience suffers, and the
end-to-end outcome is compromised.

Start with use cases that have minimal dependencies on the platform’s missing features
The platform evolves in response to its users. It cannot simply satisfy all the
features needed by all the use cases at any point in time. In the early phases of
execution, it is important that the use cases are carefully selected. The early use
cases have just enough dependencies to the platform, so they drive the prioritiza‐
tion and build of necessary platform services without getting completely blocked.

Start with use cases and developer personas that don’t get completely blocked
by the missing platform capabilities. This creates momentum. As for the missing
platform capabilities, they can be custom developed by the domain teams and
later get harvested and generalized into the platform.
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Create long-term ownership and budgeting for platform services and data products
While business initiatives and individual use cases can provide investment to
develop the mesh, the mesh must be considered a long-standing digital invest‐
ment and an internal product of the company.

It is expected to continue to deliver value beyond its inception. Hence, it requires
its own allocated resources and investment to sustain its long-term evolution and
operation.

Example of business-driven execution
Let’s have a closer look at the example I introduced in the opening of this chapter and
see how business initiatives can drive the execution of data mesh components.

Daff has a strategic initiative to “Intelligently curate and present context-aware
personalized content.” This initiative embodies a program of work using ML and
insights to present and suggest different types of content such as music, podcasts, and
radio channels to listeners. The program is planning to exploit data including users’
interactions, profiles, preferences, their network, locations, and local social events to
continuously improve the relevance of the recommendations and curated content.

This business initiative leads to the development of a few ML-based applications such
as “Tell me about my preferences,” “Personalized playlist browser,” and “Similar music
explorer.” These applications depend on curated playlists and music, recommended
based on many data dimensions such as mood, activities, time of day, holidays, music
genre, etc.

To provide the data for these curated playlists, multiple data products must be devel‐
oped. The list of data products includes consumer-aligned recommended playlists
such as monday playlists, sunday morning playlists, sports playlists, etc., that
utilize ML. To build these data products, a few source-aligned and aggregate data
products are needed, such as listener profiles, music profiles, listener play events,
calendar, etc.

Depending on the maturity and availability of the platform capabilities, the platform
prioritizes the needs of data product developers and consumers. For example, given
the growth of the number of data products, the platform may prioritize data product
automated life-cycle management, or due to ML-based transformations it will support
ML-model transformation and flow-based transformation engines.

Given the privacy concerns of users’ profiles and information, the governance and the
platform prioritize establishing, codifying, and automating encryption and access to
personally identifiable information (PII) for all the data products.

This process repeats with the introduction of new business initiatives, e.g., “Intelli‐
gently identity, onboard, and promote artists.”
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End-to-End and Iterative Execution
The only thing a Big Bang re-architecture guarantees is a Big Bang!

—Martin Fowler

Continuous iterations of end-to-end delivery of intelligent business value enriches
the mesh. It builds up the number of data products. It enhances the platform services.
It increases the coverage and effectiveness of the automated policies.

Figure 15-4 visualizes an end-to-end iteration of data mesh execution based on
the previous example. At any point in time, there are multiple iterations executing
concurrently.

Through iterations of delivering use cases, such as the one mentioned earlier, more
data products get created, more applications become intelligently augmented, more
domains become part of the mesh, further platform services mature, and more of the
policies become computationally enabled.

Figure 15-4. Maturing and enriching the mesh components through iterations of business
use cases
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identified different techniques and attitudes toward product development during each of these phases. I have
adapted them to data mesh execution.

Evolutionary Execution
The proposed execution model for creating a data mesh operational model and
architecture is incremental and iterative, where with each iteration the organization
learns, refines the next steps, and incrementally moves toward the target state.

I don’t recommend a rigid up-front plan of carefully designed tasks and milestones.
From experience, I simply don’t believe such a plan will survive the first encounter
with the execution and volatile environment of a large-scale business. Having said
that, frameworks such as EDGE—a value-driven digital transformation—that priori‐
tize getting outcomes, lightweight planning, continuous learning, and experimenta‐
tion founded on agile principles can be very helpful in defining the operational model
of the transformation.

Regardless of the transformation framework you choose, the process of executing
data mesh is treated as an evolutionary one. An evolutionary process recognizes and
caters for different stages of maturity of the implementation and has a set of tests
and metrics that continuously guide the execution toward the optimal outcome and
higher levels of maturity.

In this section, I share two tools that help you navigate an evolutionary execution: a
multiphase adoption model that guides the execution at the macro level looking at
the long-horizon milestones, and a set of objective functions that guide the evolution
at the micro level of each iteration.

A multiphase evolution model
I have found the s-curve of innovation adoption5 is quite a useful tool to frame
the evolution of data mesh components. While the shape of the curve might be
different in different organizations, some with a steeper or slower slope, or a shorter
or a longer tail, the general phases of the curve can be successfully used to guide
the approach to evolution. This is useful in guiding the long-horizon evolutionary
milestones.

Figure 15-5 shows the s-curve of growth for data mesh. Each phase of the curve is
mapped to a different population of adopters—innovators, early adopters, majority
adopters, late adopters, and laggards—in the organization. Then, each phase of the
curve is mapped to a corresponding mode of development—exploration when boot‐
strapping, expanding when scaling, and extracting6 when sustaining operation at scale.
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Figure 15-5. Evolutionary adoption of data mesh in an organization

This is a de facto model for adopting a new innovation, and it can be adapted to guide
the evolutionary phases of the data mesh components and principles.

For example, let’s see how this can be applied to the execution of the platform
component. The platform implementation will go through phases of bootstrapping
with an exploration mindset where the early features of the platform are built in
service of the innovator and early adopters—the risk takers and expert users. As the
platform matures, it expands and extends its self-serve capabilities to serve a larger
population of users, the population of generalist technologists in domains without
hand-holding. During the expansion phase, the platform matures its support services
to reduce the friction of using the platform and satisfy a more diverse persona of late
platform adopters. Once the majority of users and their needs are addressed, platform
changes remain minimal, and the organization extracts and exploits the features that
are currently in place, at scale. During this phase, the platform APIs and services get
reused by new data products and use cases.
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With the arrival of a major industry innovation in data management, an organiza‐
tion’s attempt to use the platform in new and novel ways, and the vendors’ shifts in
the underlying technologies, the platform will go into the next s-curve of evolution,
and the process repeats.

Similarly, you can use this curve to plan the execution of domain ownership.
Depending on the phase of the evolution, identify the corresponding class of
domains—innovators, lead adopters, late adopters, and laggards—and prioritize
which ones join the mesh first. For example, pick the domains that have more data
expertise as the innovator adopter before moving to the majority adopter domains.
Use the early adopter domains to pave the path for others. For each phase of the
evolution, be intentional about the different capabilities developed and the behavior
of the teams. For example, in the early phases, the teams should adopt a more
exploratory attitude to establishing policies, the platform, and data products, with a
tolerable level of manual intervention. In the expand phase, the mesh needs to mature
to minimize manual activities, have extensive observability in place to monitor the
load, and scale usage with great policy coverage.

Let’s look at the adaptation of the s-curve to each of the data mesh components and
establish their characteristics for each evolution phase.

Domain ownership evolution phases.    Figure 15-6 shows an example of dimensions of
domain ownership as it evolves through the adoption phases.

Figure 15-6. Example of domain ownership characteristics through phases of evolution
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During the exploration and bootstrapping phase, only a small number of domains
are involved in the execution of data mesh. These early domains often act both as
the provider of the data and as the consumer in order to participate in end-to-end
value delivery with minimal dependencies. Nevertheless, both roles are necessary to
be part of this phase. In this phase the domains focus on exploration and setting up
a foundation for growth. The early adopter domains are setting sensible practices in
terms of defining the data product owner role and setting up the domain team struc‐
ture. They pave the path by creating tooling and processes to integrate operational
data from applications to source-aligned data products. The early domains are among
the most advanced in their data and analytics capabilities with a modern technology
stack. At this stage, value comes from unblocking a small number of high-value use
cases.

During the expand and scale phase, in rapid increments, an increasing number of
domains join the mesh, the majority middle. The early majority continue to pave the
path and establish a set of repeatable patterns, technically and organizationally, so
that the execution can rapidly scale out to the majority of the domains. New domains
contribute to source- and consumer-aligned data products and aggregate data prod‐
ucts. The need for aggregate data products and pure data domains arises with the
increased number of domains. Domains have a diverse set of technology stacks, very
likely with older and legacy systems that need to be integrated or migrated to the
mesh. They introduce a new set of practices and tooling to handle legacy integration.
At this stage, value comes from the positive network effect.

During the extract and sustain phase, most of the domains have moved to an autono‐
mous data ownership model, and the number of domains stabilizes. Fluctuations to
the domains are expected due to optimization of the data ownership model. Domains
that have become bottlenecks due to the large number of data products may break
up into multiple domains, and domains that users are minimally dependent on
may merge with others. In this phase provider domains continue to modify, evolve,
and optimize their data products, but the majority of activities are happening in con‐
sumer domains taking advantage of the large set of data products available for reuse
and building new scenarios. Domains that have been technologically misaligned with
the mesh, due to the location of their data or the age of their systems and data
technology, may choose to join the mesh at this point where most of the capabilities
and organizational practices are well established. At this stage, value comes from
consistency and completeness effects across the organization.
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Data as a product evolution phases.    Figure 15-7 shows an example of dimensions of
data product development as they progress through the phases of evolution.

Figure 15-7. Example of data product characteristics through phases of evolution

During the explore and bootstrap phase, only a small set of data products is created.
The early data products support an essential subset of affordances introduced in
Chapter 11. For example, only a subset of output port modes may be available,
with a limited retention period of sharing just the latest snapshot, or limited discov‐
erability capabilities. In this phase, data product development has an exploratory
nature in order to identify the best approach to implement each of the data product
affordances. Data product developers are actively establishing patterns and sensible
practices. Early data product developers work collaboratively to share knowledge and
learnings. Data product development actively influences the platform features, based
on experimentation and early learnings. Data products developed during this phase
may not have a standard blueprint and don’t yet fully utilize the platform capabilities.
During this phase the chosen data products are among the low-risk ones from the
security and reliability perspective, and they are tolerant of minimal standardization.
The early data products are selected to be different but complementary in terms
of their development model and technology requirements. This keeps the platform
dependencies focused. At this time, the majority of data products are source-aligned,
with a smaller number of consumer-aligned data products addressing the needs of
specific use cases that are bootstrapping the mesh.

290 | Chapter 15: Strategy and Execution



During the expand and scale phase, a large number of data products are being added
to the mesh, at a rapid rate. With early adopters having established the standardized
patterns of data product development, the data products can be developed rapidly.
The data products create the necessary affordances required to be observed, discov‐
ered, and used at scale by a large number of the users without hand-holding. Data
products support a diverse set of transformations such as running ML models or
stream-based data processing. Data product development is focused on supporting a
diversity of sources and consumers. Data products developed during this phase can
be of a higher risk category with regard to privacy, uptime, resilience, etc. A diverse
class of data products, with an increasing number of aggregate data products get
created in this phase.

During the extract and sustain phase, the number of data products is likely to stabilize
with a slower pace of change. The optimization of data products or new business
needs may create new data products or change the existing ones. The data products
continue to evolve. Data products continue to optimize for more rapid access to data,
higher performance of data sharing, and other cross-functional concerns to address
the large scale of usage. They also continue to optimize their life-cycle management
and increase the speed of applying changes. Data products with a longer lead time to
change, due to transformation complexity, are broken down into smaller and more
efficient data products. During this phase the focus of data product development is
to generate large-scale returns on the prior investments of data product development.
Many intelligent business initiatives can use the existing data products as is. During
this phase, laggard legacy data storage or systems are converted to data products.

Self-serve platform evolution phases.    Figure 15-8 shows an example of self-serve plat‐
form characteristics as they change through the evolution of data mesh.

Figure 15-8. Example of data platform characteristics through phases of evolution
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During the bootstrap and explore phase, the platform is establishing its essential foun‐
dational capabilities, mainly in the utility plane—storage, compute, accounts, access
control, transformation. A primitive set of data product experience services are devel‐
oped, such as basic data product life cycle management and global addressability.
There are very few mesh experience plane capabilities such as basic discoverability. In
this phase, the platform self-serve implementation is premature and can be as simple
as pull-request-based script sharing. The platform users are expert data product
developers and consumers that can get by with minimal self-serve capabilities. The
platform supports a smaller number of users. The platform team is working closely
with early domains to provide their needs without blocking them and harvesting
the cross-functional features the domain teams are building back to the platform.
In the early phases, the platform is opinionated and has a limited set of supported
technologies to focus on what is necessary to get momentum.

During the scale and expand phase, the platform supports automatic data product
generation, with all affordances in place, though some might have limited functional‐
ity. For example, the automatic data metrics sharing foundation is in place, but the
metrics set may not include all possible temporal, quality, or volume information.
The platform is mainly used through the data product experience plane or the mesh
experience plane. Platform self-serve abilities mature rapidly to support a larger
portion of the population with common requirements. Automated processes and
tools are established. The persona of the platform target users skew toward majority
generalist technologists. The platform focuses on serving the majority middle popu‐
lation of users without requiring hand-holding. Teams who wish to use a different
set of technologies that the platform offers remain off the platform and will have
the end-to-end responsibility of meeting the mesh governance and compatibility
requirements. Only a small number of teams should fall into this category.

During the extract and sustain phase, the platform has a mature state of automatic
observability, automatic healing, and a high degree of resiliency at scale. Any down‐
time in the mesh can have large-scale consequences. The platform capabilities are
matured and exploited for a diverse set of use cases, data products, and teams. The
platform continues to optimize the self-serve capabilities for laggards and outliers. In
this phase, the platform is utilized by the majority of the teams in the organization.
Platform development focuses on optimizing the experience of the mesh and lower‐
ing the risk of downtime or security breaches.

Federated computational governance evolution phases.    The federated governance oper‐
ating model and the computational policies governing the mesh evolve through the
adoption phases. Figure 15-9 shows the evolution of governance characteristics such
as the number of domains joining the federated governance operation, maturity of
the federated operating model, the focus of governance development, and coverage of
computational policies.
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Figure 15-9. Example of governance characteristics through phases of evolution

During the explore and bootstrap phase, the new governance model forms with
only a few early domains that are participating in the federated governance. The
governance operation establishes the principles that guide the decision-making pro‐
cess and decide what policies the organization must implement globally and what
can be left to domains. The global incentives of domain data product teams are
defined, augmenting their local domain incentives. During this phase, the existing
governance structure reshapes into a federated model. The members of the existing
governance group are either taking a subject matter expert role, joining the platform
team to help with product management of cross-functional policy automation, or
joining the domains as data product owners. The governance is focusing on setting
the foundation. Data product developers in the early days may build their own
implementation of policies, and the platform harvests them later into its self-serve
capabilities, a form of crowdsourcing for some of the early policy implementations.
The early governance and domain teams pave the path in establishing the operating
model, decision making, and policy automation. The governance function establishes
the essential policies relevant to early data products and domains. Only a subset of
essential policies might be implemented automatically by the platform and enforced
consistently in all data products, such as security and privacy.

During the expand and scale phase, with the basic operating model and approach to
automating policies having been established by early domains and governance teams,
the road is paved for scaled governance with a majority of domains joining the mesh.
The process of onboarding new domains on the mesh is frictionless. The number of
members of the federated governance team increases to include the majority of the
domains in the organization. The team focuses on increasing the coverage and diver‐
sity of the policies and maturing the operating model for rapid onboarding of new
domains. During this time, the majority of policies are automated to support a mesh
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with a large number of interoperable and secure data products. Basic monitoring of
policies is in place.

During the extract and sustain phase, all data products on the mesh are embedding
automated policies. There is an automated process in place to detect policy risk and
lack of conformance to notify data product teams to address concerns with automa‐
ted tools provided by the platform. The team focuses on optimizing the governance
process and enhancing the supported features of automated policies. The mesh is
monitoring and optimizing the performance of the policies.

Guided evolution with fitness functions
While the adoption phases guide the execution of data mesh at a macro level, during
a large time scale of months or years, continuous measurement and tracking of a set
of objective fitness functions guide the small increments and short iterative execution
cycles.

Fitness Functions
A fitness function is an objective function used to summarize how close a prospective
design solution is to achieving its set aims. In evolutionary computing, the fitness
function determines whether an algorithm has improved over time. In Building Evo‐
lutionary Architectures, fitness functions objectively guide the iterations of an archi‐
tecture toward its set objectives across multiple dimensions such as performance,
security, extensibility, etc.

Fitness functions is a concept borrowed from evolutionary computing, which is an
objective measure used to assess whether the system as a whole is moving toward its
intended design target and is improving over time, or not.

In the context of data mesh, these objective functions can determine how “fit” the
mesh implementation is at any point in time, and whether every iteration is moving it
closer or further from its optimal state of delivering value at scale.

Data mesh’s ultimate objective is increasing the ability of organizations to utilize
data for analytical purposes and get value from their data at scale, aligned with
organizational growth and complexity. Each of the data mesh principles contributes
to this high-level outcome. Hence, fitness functions can target the outcomes expected
from each principle.
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Organizations, (Portland, OR: IT Revolution Press, 2018).

Coming up with numerical fitness functions, particularly when
we are still figuring out what good looks like, is very hard. Even
in the case of well-established DevOps engineering practices, the
book Accelerate: Building and Scaling High Performing Technology
Organizations,7 after years of running quantitative research and
measuring 24 key metrics, demonstrates that only a small number
of metrics, 4, had a direct link to the organization’s performance
and the majority were simply vanity measurements.
The objective measures proposed here are examples and a starting
point. They need to be experimented with, quantitatively meas‐
ured, and compared across organizations to prove that they are in
fact just the right ones.

You might have noticed that I have used the concept of fitness function over key
performance indicators (KPIs). While both concepts are essentially about objective
metrics and giving visibility to the state and trend of data mesh execution progress,
the fitness function tells you how “fit” the data mesh design and implementation are
at any point of time and guides you through the changes to make the right ones and
revert the ones with negative impact, with a focus on behaviors and outcomes that
really matter.

For example, a KPI related to the “number of data products” might sound appealing
to many leaders as an indicator of success and growth of the mesh. This is in fact
not the right measure, as it does not indicate the “fitness” of the mesh. The target of
the mesh is a design to “deliver value.” This is not directly related to the number of
data products but related to the “number of links to data products” as a measure of
usage. The more links and interconnectivity, the more data products are being used
to generate value.

Data mesh execution requires automated instrumentation, collection, and tracking
of these metrics. The platform services play a key part in tracking and externalizing
many of these metrics. For example, to measure the “acceleration of policy adoption”
as a function of effectiveness of automated policies as code, the platform can measure
the “lead time of a data product to adopt a new policy.” This can be collected as
instrumentation of the data products’ continuous delivery pipeline.

Data product and mesh experience plane services enable the domain and global
governance teams to measure, report, and track these execution metrics. Detecting
trends in the wrong direction can trigger a set of actions to investigate the root
cause and prioritize the fixes to nudge the evolution of the mesh toward its objective
outcomes.
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I suggest that you define a set of objective fitness functions for your data mesh
execution. Automate their implementation as much as possible, and continuously
monitor their trends. They can guide you through the execution of data mesh and
take the next best step.

The fitness functions I have introduced in the following are only examples. I have
demonstrated how they are derived from the expected outcomes of each data mesh
principle. You can adopt the same approach and come up with your own fitness
functions to test and evolve.

Domain ownership fitness functions.    Figure 15-10 shows an example set of fitness func‐
tions that measure the progress of domain data ownership. These fitness functions
measure a set of objectives that tell us whether the evolution is moving in alignment
with the outcome of domain data ownership.

Is the implementation generating more value through data sharing in step with organi‐
zational growth?

Figure 15-10. Example of domain data ownership fitness functions
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Data as a product fitness functions.    Figure 15-11 introduces an example set of fitness
functions that measure whether the data mesh implementation is objectively pro‐
gressing toward data as a product outcome.

Is the effectiveness and efficiency of data sharing across domains increasing with organi‐
zational growth or not?

Figure 15-11. Example of data as a product fitness functions

Self-serve platform fitness functions.    Figure 15-12 introduces an example set of fitness
functions that measure whether the data mesh implementation is objectively pro‐
gressing toward the self-serve platform outcome.

Is the platform increasing domains’ autonomy in producing and consuming data prod‐
ucts and lowering their cost of data ownership?
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Figure 15-12. Example of self-serve platform fitness functions

Federated computational governance fitness functions.    Figure 15-13 introduces an exam‐
ple set of fitness functions that measure whether the data mesh implementation is
objectively progressing toward the governance outcome.

Is the mesh generating higher-order intelligence—securely and consistently—through
efficient joins and correlations of data products, in step with organizational growth?
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Figure 15-13. Example of governance fitness functions

Migration from legacy
We can’t talk about an evolutionary execution of data mesh without talking about
legacy. The majority of the organizations adopting data mesh likely have one or
multiple implementations of past data architectures such as data warehouses, data
lakes, or data lakehouses, and a centralized governance structure with a centralized
data team.

Data mesh execution must incorporate migration from such legacy organization
structures, architecture, and technology in its incremental and evolutionary journey.
However, it is difficult to generalize migration from legacy, as the path highly depends
on many variables specific to the organization such as the time constraint on migrat‐
ing to the new infrastructure in the case that establishing the mesh coincides with
migration to a new environment, e.g., a new cloud provider; the scale and number of
early adopter domains; the available investment for the platform; and so on.
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Laying out a migration strategy from a particular state to data mesh is out of the
scope of this book and requires close collaboration with an organization and under‐
standing its unique context.

However, what I can share with you is a list of high-level lessons learned from my
experience so far. There is a lot more to be learned here.

No centralized data architecture coexists with data mesh, unless in transition.    I often get
asked if the existing warehouses, lakes, and lakehouses that the organizations have
created can coexist with the mesh. The short answer is transitionally yes, but ulti‐
mately no.

Any incremental migration would require a period of time where the old and the new
coexist at the same time. However, the goal of data mesh is to remove the bottlenecks
of the lake and warehouse. Decentralized data products replace the centralized and
shared warehouses and lakes. Hence, the target architecture does not intend for the
centralized bottlenecks to coexist with data mesh.

For example, retaining a centralized data warehouse or a lake and then feeding a data
mesh downstream from it is an antipattern. In this case, the introduction of data
mesh is an added complexity, while the bottleneck of a warehouse collecting data
from domains remains.

Alternatively, as a transitory step, it is possible to have a data mesh implementation
that feeds data into a warehouse, which in turn serves a controlled and small number
of legacy users whose reports are still using the warehouse. Until all the legacy
warehouse users are migrated to the mesh, the mesh and the warehouse coexist.
The migration continues, and it reduces the level of centralization of the warehouse
bottleneck.

The ultimate goal of the architecture is to remove and reduce the overall level of
centralization. Hence, ultimately a mesh implementation and a central data warehouse
or lake should not coexist.

Centralized data technologies can be used with data mesh.    At the time of writing this
book, no data-mesh-native technologies have been created. We are at a stage of
evolution when adopters utilize the existing technologies, with custom configurations
and solutions built on top.

Today, my advice is to utilize the elements of the existing technologies in a way
that they don’t get in the way of building and running autonomous and distributed
data products. I suggest configuring and operating the existing technologies in a
multitenant way. For example, use the basic elements of lake-oriented technologies
such as object storage and configure the allocation and access to the storage based
on the boundary of each data product. Similarly, you can utilize data warehousing
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technologies as an underlying storage and SQL access mode but allocate a separate
schema to each data product.

Not all existing technologies lend themselves to such configuration. You can utilize
the ones that do.

Bypass the lake and warehouse and go to directly to the source.    When migrating from an
existing lake or warehouse, the path of least resistance is to put the warehouse or lake
upstream to the mesh and implement the data products with input ports consuming
data from the existing warehouse tables. My advice would be to not take this path
and instead discover the existing consumers of the lake or warehouse, recognize
their needs and use cases, and directly connect them to new data products that
consume data from the source domain systems. Discover the domain owners early,
develop the data products according to the domain’s truthful representation of the
data, and update the consumers if need be. Creating artificial data products that
represent the lake files or warehouse tables does not achieve the outcomes of the
mesh, scaling through ownership by domains and closing the gap between the source
and consumer. It only adds further technical debt, creates another layer between the
source and consumer, and increases the distance between them.

Use the data warehouse as the consuming edge node.    Assessing the consumers of an
existing warehouse, you may decide to keep some of them in the warehouse and
never migrate them to the mesh. There are multiple reasons for this decision. For
example, reports such as financial reports that don’t change that often, rely on a small
and specific set of tables, and are defined with complex business logic that are hard
to reverse engineer and re-create may remain dependent on the warehouse. In this
case, you want the warehouse to act as a consumer of the mesh and become an edge
consuming node, with limited reports accessing a small set of its remaining tables.

Migrate from a warehouse or lake in atomic evolutionary steps.    It’s likely that migration
from the data warehouse or lake takes many evolutionary iterations and possibly
months or years depending on the size of the organization. I strongly suggest execut‐
ing your migration in atomic evolutionary steps where the state of the system is left
with less technical debt and architectural entropy when the step is completed. While
this might sound logical and seemingly obvious, it’s often ignored. The teams often
keep adding new infrastructure and new data products while leaving the old pipelines
or lake files behind. Over time they just add to the architectural complexity and total
cost of ownership to maintain the new and leftover old systems. The main reason
behind this coexistence is that we often fail to migrate over users and consumers to
the new components.

For example, if you are creating a new set of data products, make sure you take the
time to migrate over the existing consumers—reports or ML models—of the lake or
warehouse to them. An atomic step of migration includes adding new source-aligned,
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aggregate, or consumer-aligned data products, migrating the consumers over to
the new data products, and retiring the tables, files, and pipelines of the lake and
warehouse. The migration step is complete when all these steps happen or all revert
if some don’t complete. At the end of this atomic step, the architectural entropy is
reduced.

Conversely, the atomic migration step is not complete if we don’t migrate the con‐
sumers after creating new data products or if we don’t retire the existing pipelines
and lake files. Make sure your project scheduling and resource allocations are aligned
with committing to atomic steps of migration.

Recap
Data mesh execution is part of a larger data strategy and in fact is a major component
of the strategy. It needs business-oriented strategic initiatives, defining the hypothesis
of how data generates value aligned with business objectives, to drive its execution.

ML and analytics-powered business use cases become the vehicles that execute iden‐
tification and delivery of data products, adoption of data by domains, and establish‐
ment of governance and the platform.

Balancing between point solutions delivering a data-driven business outcome versus
building a long-term shared platform across multiple use cases remains a challenge.
Tools such as the evolutionary approach based on the long-term adoption roadmap
and functions to measure fitness of the implementation according to its long-term
objective help establish an equilibrium and guide the execution in an evolutionary
fashion toward a mature state.

On rare occasions an organization has the opportunity to create a greenfield data
mesh implementation. In the majority of cases, a brownfield execution must account
for migration of existing architectures such as a data warehouse, lake, or lakehouse.
In this case, migrating the old architecture and organization depends on executing
atomic evolutionary steps that each migrate the data consumers and providers and
everything in between the two toward the mesh.

These initial guidelines and approach should suffice to get you started while you learn
and refine the process along the way.

What remains is a few notes on how to organize your teams and evolve the culture of
an organization during this evolutionary execution, which I cover in the last chapter
of this book, Chapter 16. See you there.
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CHAPTER 16

Organization and Culture

Culture eats strategy for breakfast.
—Peter Drucker

In Part I of the book, I introduced data mesh as “a sociotechnical approach to share,
access, and manage analytical data in complex and large-scale environments—within
or across organizations.”

In this chapter I focus on the social side of this sociotechnical approach. I will
elaborate on the changes that data mesh introduces to people’s roles, responsibilities,
motivations, and collective interactions in an organization.

I will cover a few of the key organizational design choices critical to the implementa‐
tion of data mesh. I use Galbraith’s Star Model to structure the organizational design
choices around the five categories of strategy, structure, processes, rewards, and people.
These categories are all interrelated and influence each other, and the sum of all of
them results in the emergence of the organizational culture.

Figure 16-1 summarizes the Star Model applied to organizational elements of data
mesh.
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Figure 16-1. Data mesh organizational design decisions framed by Galbraith’s Star
Model

The components of the Star Model include:

Strategy
Data strategy frames and embodies data mesh. In Chapter 15 I covered how a
data strategy aligns with the principles and components of data mesh to execute
toward a decentralized data ownership that embeds data-driven value generated
through ML and insights into each and every aspect of a business and its prod‐
ucts and services.

Structure
In this chapter, I cover Team Topologies, including the distribution of power and
decision making and the shape of the teams and roles within them introduced by
data mesh.
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Process
I summarize the key processes such as the global process of governance, peer-to-
peer data sharing across the mesh, and identification and assignment of data
products and their ownership.

Reward
I cover the motivations and rewards that align goals of teams and individuals
with the overall data strategy, based on data mesh ways of working—autonomous
teams delivering results and growing a new generation of data practitioners.

People
I will discuss the skills and mindsets of cross-functional teams to become data
producers and consumers.

Culture
I will cover the core values that will drive organizational behavior aligned with
data mesh principles.

In the rest of this chapter, I surface the changes that will occur for each of these
categories as a result of a data mesh implementation.

First, let’s look at the process of change itself.

Change
Whether you are starting a greenfield implementation, building a new data-driven
organization, or brownfield evolving an existing one, you are creating change. Change
in mindsets, skills, values, ways of working, and ways of being.

You need to decide how you are going to approach change. What I recommend
is movement-based change. This approach to organizational change, introduced by
Bryan Walker, draws from movement research.1 Its core finding proves that social
movements start small and show early powerful wins to demonstrate the result and
efficacy of change. These early wins help gain momentum toward large-scale change.

In Chapter 15, I introduced a movement-based execution framework (“Data Mesh
Execution Framework” on page 279) that tied the implementation of components
of data mesh directly to strategic initiatives and delivering data-oriented results, in
the form of intelligent solutions and applications. This iterative and business-driven
execution framework is a great vehicle to incrementally move organizational struc‐
ture, processes, and motivations. The early results and wins demonstrated by a small
number of innovator adopters in the organization create buy-in and inspiration for an
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organization-wide change that scales through an evolutionary roadmap (“Evolution‐
ary Execution” on page 286).

Since the early execution iterations and wins become the beacons for change, it’s
important to select them with qualifying criteria aligned with the organizational
change objectives at the time.

For example, if establishing data product ownership by the cross-functional domain
team is the objective, the selection of business initiatives must align with achieving
this objective. Early business initiatives involve domain teams that are most condu‐
cive to this change and can be the beacons for others. For example, a domain with
intrinsic needs for applying insights and ML to their function, e.g., the playlists
team, is a good candidate. Such early teams have most of the skills needed to make
the transformation and become the early creators of data products. Look for easier,
quicker wins early on and find the most aligned adopters first.

Figure 16-2 demonstrates applying the selection criteria and an end-to-end execution
of use cases to implement the data mesh technical components and also evolve the
organization iteratively.

Figure 16-2. End-to-end execution of data-oriented initiatives create the context to
iteratively make organizational change

A great side effect of this approach is that the teams and people who are directly
impacted by the change are engaged in the process of creating change and delivering
results. They can refine the change based on their learnings through the execution.
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Keep in mind that change happens within the context of the phase data mesh evolu‐
tion (“A multiphase evolution model” on page 286), during the explore, expand, and
extract phases. What changes and to what extent evolves during these phases. For
example, for early business initiatives and iterations of change, the teams involved in
the change work as one group. The first data mesh initiative likely has the members
of the platform team and the domain(s) involved work together more closely with
synchronous tasks and collaborations. As the evolution moves to later phases, expand
and extract, the teams work autonomously with less synchronous dependencies and
communications.

While data mesh’s movement-based organizational change gives you a starting point,
there is a lot more to cultivating, enabling, and creating change. That is outside of the
scope of this book: your organization must commit to discovering the art and science
of the process that will persuasively2 drive cultural and organizational change, from
preparing the ground prior to the execution to managing people’s emotions through‐
out. The organization needs to have a top-down continuous and clear executive com‐
munication of the vision on becoming a decentralized data-driven organization, and
a bottom-up enablement through technology, incentives, and education. Everyone
involved must set and track the hard3 measures of change (“Guided evolution with
fitness functions” on page 294) and the soft ones that follow employees’ satisfaction,
behavior, attitude, and capabilities.

The first step to drive change—the first initiative and the first teams to change—often
feels like too much to overcome. Start small, start with teams who will have the least
amount of headwind to change, get some wins, and pave the path.

Culture
Culture represents the language, values, beliefs, and norms that an organization
embodies. Today, many organizations value the volume of data they are capturing.
They believe that data collection centrally can deliver value. The norm is to externalize
data responsibilities to someone else, the centralized data team. Concepts such as
data pipeline, canonical models, and single source of truth are ubiquitously present in
the language. Such a culture is at odds with data mesh and needs to evolve.

While changes to structure, process, rewards, and other organizational design ele‐
ments have an impact on the culture, the core element I like us to focus on here is the
values. Out of all the elements of the culture, values are the deepest manifestation of
the culture, and not surprisingly the language and symbols are the most superficial.

Culture | 307

https://oreil.ly/FGcch


4 Daphna Oyserman, “Values: Psychological Perspectives”, International Encyclopedia of the Social & Behavioral
Sciences, (2001), 16150–16153.

For example, as of this writing, the language of “data product” has been widely
adopted by the industry, while the manifestations of its core values widely vary from
what is presented in this book.

According to Daphna Oyserman, professor of psychology, values are internalized
cognitive structures that guide choices. They evoke a sense of what is wrong and what
is right. They establish a sense of priorities and meaning.4 Ultimately, values drive
behavior and predict actions.

Defining and cultivating data mesh values within the context of your organization
is an important step in establishing your data culture. These values are then lived
through the actions and decisions teams and individuals make.

Values
Here are some of the core values of data-mesh-native organizations, summarized
in Figure 16-3. If an organization adopts data mesh in its entirety, these values are
shared by all the teams and are expected from each other. These values are uncom‐
promisable. They drive action. You can use these as a starting point and contextualize
them to your organization.

Figure 16-3. Values underpinning a data mesh culture
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Analytical data is everyone’s responsibility
Domain-oriented data ownership promotes a sense of responsibility in providing or
consuming analytical data in every cross-functional team and across the business.
Whether these teams are enabling the business with digital technologies and services,
building new products, or selling or marketing them, they are composed of cross-
functional disciplines that are capable of using and sharing analytical data.

Connect data across the boundaries to get value
The premise of data mesh in support of scaling data usage is to enable connectivity
of data across a mesh. The nodes on the mesh are connected across organizational
boundaries, within and outside. This is in contrast to collecting data in a lake or
warehouse. The connectivity is established on multiple levels: input and output ports
that establish data sharing and lineage; data semantic and syntax sharing through
schema linking; and data join and correlation through data linking and global
identifiers. Valuing data connectivity fosters interoperability at scale, which leads to
generation of insight over a large volume of diverse data.

Delight data users
Satisfy data users, earn their trust, and accelerate their analytical application develop‐
ment with data products. This value focuses on the purpose of data products. It places
data users and their experience at the center. It drives actions that put emphasis on
the impact of data products on data users in rapid development of analytics and ML
applications with high levels of trust and confidence in the data.

Value the impact of data
What we value and measure as success drives how we behave and manage our
resources. Data mesh focuses on the impact of the data and not its volumes. It values
data usability, data satisfaction, data availability, and data quality over the volume of
the data. Of course, in many cases volume contributes to impact, particularly in the
case of ML where more is more, yet it’s secondary to usability.

Build data products for change, durability, and independence
Constant change, independence, and data durability across a long period of time
are the main characteristics of data products. For example, the data product design
consideration to embed the runtime data transformation to mutate and generate a
continuous stream of point-in-time data is necessary to accommodate continuous
change. Data, by default, evolves over time. The design consideration to include the
data and the policies that govern the data as one unit is necessary for data products
to achieve a high degree of independence and self-sufficiency. The design decision to
store data as time-variant information with long-term retention is necessary for data
durability. Analytical use cases need access to data over a long period of time.
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Balance local data sharing with global interoperability
DataBold Textbalancing local sharing with global interoperability mesh embraces
local autonomy and diversity of the domains in sharing and using data. This
autonomy is balanced with the global interoperability that enables mesh-level
data discovery, connectivity, and conformance. Global interoperability is managed
through the federated governance operating model and enabled by automated poli‐
cies embedded in each and every data product.

This value drives actions to continuously find the balance between domain-level local
optimization and mesh-level global optimization.

Close the data collaboration gap with peer-to-peer data sharing
Data mesh removes organizational and architectural gaps between data providers
and consumers, connecting them directly through data shared as a product. Platform
discovery capabilities and computational governance for granting access to data
independently without intermediaries decrease such a gap and ultimately lead to
frictionless access to data. This promotes a data- and experiment-driven culture.

Automate to increase data sharing speed and quality
Platform services automate and streamline data sharing workflows and continuously
improve the quality of data. The platform teams continuously seek to find new
and improved ways to utilize automation in removing friction in data sharing and
optimize the experience of data providers and consumers.

Reward
How people are motivated and rewarded is another element of organization design.

One of the oppositions that I often hear about data mesh is that organizations
struggle to get their application or product teams to care enough about the analytical
data to put effort into building ETLs and data pipelines. I completely agree with
this statement. If I were a developer in a domain team, let’s say building the “Music
player” application, I would not be motivated to build a bunch of ETL jobs to get
data out of my database application and dump it somewhere else for use cases I don’t
understand. This is neither motivating nor aligned with the data mesh approach.

In the past, we have patched this problem by building data teams downstream from
application teams to address data quality and modeling by building intermediary
pipelines. This is not fixing the root cause. It simply creates accidental complexity.
Data mesh addresses the root cause—drive and motivation.
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Intrinsic Motivations
The data mesh approach builds on how people are intrinsically motivated. Daniel
Pink, in his book Drive: The Surprising Truth About What Motivates Us,5 emphasizes
that modern businesses must foster the type of behavior and activities that have
intrinsic reward and inherent satisfaction. He calls this Type I behavior, which leads
to stronger performance and greater health and overall well-being. He then describes
the three fundamental elements of motivation that lead to Type I behavior: autonomy,
mastery, and purpose.

These intrinsic motivations are aligned with data mesh principles:

Autonomy of tech-business-aligned domains in ownership of data
Domain teams are both accountable and have autonomy in defining and sharing
their data for analytics use cases. They have autonomy in utilizing their data in
ML and analytics to create data-driven value. This autonomy is supported by the
governance operating model and the platform services.

Technologists’ mastery in managing, sharing, and using analytical data
Data mesh expands the mastery of working with data to generalist technologists,
beyond an isolated group of data specialists. Skill acquisition to work with data is
a positive motivator for developers. The platform enables new pathways for them
to gain mastery in data and analytics.

Finding purpose in sharing data as a product directly to consumers
Cross-functional teams serve their data directly to data consumers and are in
control of providing what the consumers actually need. They measure and track
the success of their data product based on the satisfaction of consumers and
growth of adoption. More importantly, cross-functional teams find a higher
purpose in managing data by advancing their applications and business with
embedded ML.

The organizations evolving toward data mesh endorse and amplify these intrinsic
motivations.

Extrinsic Motivations
It is very likely that a company executing data mesh has a reward system to extrins‐
ically motivate their employees—bonuses, incentive plans, ranking, promotions,
working conditions, etc.

I have commonly seen that organizations in the process of data mesh transforma‐
tion link their extrinsic incentives, e.g., end-of-the-year bonuses, with the goals of
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their data mesh execution. A troublesome example that I have seen is linking the
end-of-the-year bonuses to the number of data products. This leads to a mad rush of
creating data products right before the end-of-the-year review. It is counterproductive
to the goal of the mission—to get value from data through data product sharing and
connectivity across the organization and beyond. Often this rush results in additional
effort later to revert the incurred tech debt.

My personal suggestion is to divorce backward-looking assessments such as employee
performance review, rewards, etc. from forward-looking objectives and their meas‐
urements—e.g., the goals of data mesh execution. Focus the teams on forward-
looking goals and incentivize them by showing how their objectives relate to the
larger strategy’s vision and the company’s top priorities.

The forward-looking objectives can be expressed and measured as objectives and key
results6 (OKRs). OKRs can be a timely and relevant subset of measurable functions
that I introduced in Chapter 15 (“Guided evolution with fitness functions” on page
294). Achieving these objectives collectively moves the evolution of a data mesh
implementation toward its goals.

Here are a few examples for team or individual OKRs:

Growth of domains’ data product usage
This objective can be measured through on the mesh and off the mesh growth
rate—the number of downstream data products that actively utilize the domain’s
data products, and the number of end consumer analytical applications off the
mesh that directly use the data for insight generation.

Increased confidence and trust in data
This can be assessed by a set of target measurements over a period of time,
for example, for a data product with a completeness SLO of 95% over a day.
Completeness is just one of the many SLOs averaged to measure key results.

Structure
When we think about organizational design, structure is often the first thing that gets
attention. Organizational structure determines these dimensions, among others:

• Placement of decision-making power: centralized or decentralized
• Topologies of teams and departments: axis around which teams and departments

are formed
• Shape of teams: flat or hierarchical
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Data mesh does not dictate the organizational structure from scratch. It makes some
assumptions about the existing organizational structure and builds upon that.

Organization Structure Assumptions
Data mesh builds upon an organizational design influenced by domain-driven
design. In such organizations, the architectural decomposition of solutions and sys‐
tems is aligned with the division of the business functions and technical teams. If
you are new to the concept of domain-driven design, for the purpose of this chapter,
I highly recommend reading Implementing Domain-Driven Design,7 particularly the
chapter titled “Domains, Subdomains, and Bounded Contexts.”

Figure 16-4 shows a portion of the domain-oriented organizational structure for Daff.

Figure 16-4. Example of domain-oriented tech-and-business-aligned organization
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Assume that Daff is a domain-oriented organization. It has business teams who focus
on different business domains of Daff including artist management, marketing,
subscriber management, etc. Let’s look at the business domain artist management.
The purpose of this business domain is to engage and onboard more artists, facilitate
sharing their content, pay their rewards and royalties, and continuously improve how
artists get known, promoted, and connected with their audience globally. The success
of an artist and their satisfaction with the platform is of priority for this business
domain. As you can see, this domain can have multiple subdomains, unique and
distinct areas of operation such as artist payment, artist onboarding, new artist dis‐
covery, and so on. In a domain-oriented organization, there are dedicated technical
teams working closely with the managing artists business subdomains to provide
digital services, applications, and tools. For example, artist portal, artist payment
services, and artist discovery service are technical systems maintained to run the
business of artist management. The alignment of longstanding technology teams
working in close collaboration with their business counterparts is a key attribute of
such an organization.

If you recall, to pass the data mesh readiness test (“Should You Adopt Data Mesh
Today?” on page 271), you identified your organization as a domain-oriented one.
This assumption creates a baseline to build data mesh Team Topologies.

Data Mesh Team Topologies
There is great synergy between data mesh team structure and interaction models and
the work of Matthew Skelton and Manuel Pais on organizational design, called Team
Topologies.8 Team Topologies is “a model for organizational design that provides
a key technology-agnostic mechanism for modern software-intensive enterprises to
sense when a change in strategy is required (either from a business or technology
point of view).” Continuous sensing of the environmental changes and adapting to
them is well-aligned with data mesh’s organizational outcome of embracing change in
a complex, volatile, and uncertain business environment.

Team Topologies recognizes four team types (platform, stream-aligned, enabling, and
complicated subsystem teams) with three core team interaction modes (collaboration,
X-as-a-service, and facilitating).

Figure 16-5 shows an example of the teams and interactions of data mesh, expressed
in Team Topologies terms, at a high level; it only identifies the interaction models of
the logical teams at a point in time.

Domain data product teams, responsible for the end-to-end delivery of data prod‐
ucts, are considered stream-aligned teams. They share their data products as-a-service
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with other teams. The data mesh platform teams provide their platform capabilities
as-a-service to the data product teams. The governance teams partly act as enabling
teams supporting both platform and data product teams. The governance teams, at
times, work in collaboration with the platform team.

The visual language of teams and interaction modes used in this
chapter is an adaptation of the book shapes used in the Team
Topologies concept. The image labels clarify the intent of the shape.

Figure 16-5. Example of a data mesh high-level representation of Team Topologies
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The definition of team, based on Team Topologies, is a stable,
long-lived group of people working together day by day (side by
side) to achieve a common goal.
I will use the term logical team or group in cases where the defini‐
tion is looser than a team. For example, in the case of governance,
policymaking is done by a group of data product owners, subject
matter experts (SMEs), etc., who come together to formulate poli‐
cies, though the members of this group belong to different teams
on a day-to-day basis. Hence, I call them a group and not a team.
The phrase teams, in the plural form, may be used to include both a
team or a group, or both.

Let’s look closely at each of these teams and their primary interaction modes.

Domain data product teams as stream-aligned teams
According to Team Topologies, a stream-aligned team is the primary team type in an
organization. It is responsible for an end-to-end delivery of a single product, service,
set of features, etc. In the case of data mesh, the (cross-functional) domain teams have
one or multiple stream-aligned teams including the application development teams
(app dev for short) as well as the data product delivery teams (data product for short).
A domain team is a logical team, a team of teams.

Delivery of a data product focuses on an end-to-end continuous flow of designing,
modeling, cleansing, building, testing, serving, monitoring, and evolving domain-
oriented data.

The number of data product teams may vary depending on the complexity of the
domain and its number of data products. Ideally, a small team is responsible for a
data product. Each data product has an independent flow and delivery life cycle.

Data product teams will have roles such as data product developer and data product
owner that I will discuss in the next section.

A source-aligned data product is paired with its source app dev team. They work
together on a regular and more frequent basis than is expected from any other two
teams. They have more communication to decide how the data product represents
the analytical view of its collaborating app’s internal data. The two teams may have
bursts of collaboration to explicitly work together in a specific area. For example,
the podcast player app dev team collaborates with the podcast events data product
team to define how the application’s operational data will be made available to the
collaborating data quantum (“Data Product Data Sharing Interactions” on page 158).
Collaboration interactions must be short lived as they are costly. The teams should
find ways to limit the amount of collaboration effort. For example, defining a con‐
tract for the app dev team to expose their operational domain events reduces the
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collaboration overhead for the source-aligned data product team in understanding,
processing, and converting these domain events to an analytical data product.

Figure 16-6 shows the data product teams as stream-aligned teams and their interac‐
tions with app dev and other data product teams.

Figure 16-6. Example of data product teams as stream-aligned teams

Data product teams use platform services through the platform planes’ APIs, as-a-
service, demonstrated earlier in Figure 16-5. I will discuss the data product team’s
interaction with the governance teams later in this chapter.

Data platform teams as platform teams
According to Team Topologies, the platform team type’s purpose is to enable stream-
aligned teams to deliver their work with substantial autonomy. This is aligned with
the purpose of the data mesh’s multiplane data platform (“Design a Platform Driven
by User Journeys” on page 174).

The data platform team is a logical team made up of many teams with a fractal topol‐
ogy. For example, the data platform (logical) team can have multiple stream-aligned
teams, each focusing on an end-to-end delivery of a particular self-serve platform
capability of a specific plane, such as data product testing framework, data product
scheduler, etc. There could also be teams who act as a platform team internally,
providing capabilities as-a-service to other teams. For example, the utility plane
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logical team provides infrastructure provisioning services to other planes’ teams and
acts as a platform team.

Figure 16-7 shows an example of the data platform teams and their interaction modes
at a point in time. In this example, the data platform team has multiple streams,
one focusing on the data product experience plane and others focusing on different
capabilities of the utility and mesh experience plane services. This is a snapshot in
time that shows the occurrence of collaboration between two of the streams.

Figure 16-7. Example of data platform teams

How exactly a platform team divides itself into one or multiple teams depends on the
scale, complexity, and revisions of the platform in an organization. The platform team
may start as one team and over time break into multiple teams as the list of platform
services grows. It’s important to regularly assess and adjust the boundaries between
the teams within the data platform itself.

The data platform teams have two main interaction modes, x-as-a-service and collab‐
orations. For example, a data platform team can have a temporary collaboration inter‐
action with a data product team during the design and inception of new platform
features to understand their needs and improve their user experience. The objective is
to get to the level of maturity that the interactions remain as x-as-a-service to reduce
the friction of using the platform.
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Given the complexity of the platform, there will likely be multiple complicated subsys‐
tem teams with specialist knowledge of a particular area. According to Team Topol‐
ogies, “A complicated-subsystem team is responsible for building and maintaining
a part of the system that depends heavily on specialist knowledge, to the extent
that most team members must be specialists in that area of knowledge in order to
understand and make changes.”9

For example, the implementation of encryption algorithms, data synthesization, and
anomaly detection all require deep specialized knowledge. Unless the platform uti‐
lizes vendor-supplied services for these features, there will be specialized component
teams building components that the platform can then include in its services. There
are temporary collaboration interactions between complicated subsystem teams and
other data platform teams to design or integrate the subsystem.

The goal should be to minimize the number of complicated subsystems since they
can easily become bottlenecks, instead embedding the specialization needed so the
teams become self-sufficient. The interaction mode between these complicated sub‐
system teams and the platform teams is collaborative.

I cover the data platform team’s interaction with the governance group in the next
section.

Federated governance teams as enabling teams
The key role of federated governance teams is to facilitate decision making around
global policies. These policies then get implemented computationally by the platform
and adopted by the domain data product teams. Chapter 5 introduced the operating
model of governance.

In addition to establishing policies, the governance group brings subject matter
experts together who enable the data product teams. According to Team Topologies,
an enabling team helps stream-aligned teams to establish practices, provide informed
guidelines, develop their capabilities, and close knowledge gaps, while focusing on
their main responsibility of delivering their stream’s end-to-end outcome.

Figure 16-8 shows an example of governance broken into multiple groups and their
interactions with data product and platform teams. In this example, I’m classifying
the breakdown as groups—a looser construct than a team. The members of these
groups come together to perform a specific task, for example deciding on a global
policy, but they don’t work together on a day-to-day basis in a long-standing team.

Structure | 319



At the time of this writing, the optimal model for governance groups is an area
of exploration. Ultimately, the objective is to avoid creating governance teams that
become bottlenecks.

Figure 16-8. Example of data governance groups and their interactions

In this example, a global policies and standards group composed of domain represen‐
tatives, such as data product owners and platform representatives, such as platform
product owners, and SMEs, work collaboratively to identify and define a small set of
global policies. The platform collaborates with this group in automating the policies.

A group of SMEs such as legal, security, and compliance continue to consult the data
product teams.
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Discover Data Product Boundaries
Boundaries of data products directly define the boundaries of the teams. One of the
questions I often get asked is how to identify data products boundaries? What data
needs to go into one data product versus another? What is the right granularity for a
data product?

These questions are important and underpin the allocation of the data product teams
and their long-term responsibilities. Hence, I answer them here in relation to the
design decisions for an organization’s structure. The answer to these questions is not
an exact science and more importantly would change over time as the organization
evolves its data mesh implementation.

If you consider some of the principles that underpin a data product, you will arrive
at a set of heuristics to test whether the boundaries you have selected for your data
products are the right ones for the moment or not. In this section I introduce a few of
these heuristics.

Before going ahead, a quick reminder that however you assess and identify the
boundaries of data products, what good boundaries look like will change over time.
That would depend on which phase of the data mesh evolution (“A multiphase
evolution model” on page 286) you are in, the level of operational maturity to handle
a large number of data products, the complexity of the mesh, the available capabili‐
ties of the platform, and the hard constraints that the underlying vendor-provided
technologies may impose at any point in time. Plan and design for continuous
improvement and change, and not for a static and perfect design.

Start with the existing business domains and subdomains
Is the data product aligned with a business domain? Or is the data product manufac‐
tured based on theoretical modeling? Does it match business reality and truth?

Data products are owned, sourced, and consumed by the business-tech-aligned
domains. This is a fundamental organizational assumption of data mesh. Discovering
business domains drives creation and ownership of data products. Start with identify‐
ing the business domains to discover what data products they share or need.

You may ask, how do I identify the business domains? Well, you don’t need to do
much; they already exist. They represent how the business divides its resources,
responsibilities, outcome, and knowledge. For example, Figure 16-4 is an example of
Daff business domains.

Looking at these domains and their subdomains is a starting point to find the rough
boundaries between data products. There are cases where a data product doesn’t
squarely line up with one domain, and it’s an aggregate of multiple domains, in
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which case either a new domain is established or an existing domain with a stronger
influence on the life cycle and design of the data product will take the ownership of it.

Data products need long-term ownership
Is the data product conducive to long-term ownership? Does anyone care about this
domain enough to own it?

Data products are long-standing artifacts with long-term ownership. They are not
artifacts built for a particular project and then forgotten by the original project
developers. They are expected to evolve over time depending on the changing and
new usages.

If the data product you are identifying does not have such longevity, it is not a data
product. It may be a dataset inside a specific application database built for a particular
project.

Data products must have independent life cycles
Does the data product have high cohesion for ease of use and atomic integrity? Does
all the data the data product serves have the same life cycle? Or does the data product
compile multiple datasets that each change independently based on different processes
and triggers?

I suggest designing data products in a way that each holds data with the same life
cycle—create, update, delete—based on a single and well-defined process. Applying
loose coupling and high cohesion principles to define what datasets should or should
not belong to a data product assures the integrity and usability of data. The user
of a data product should be able to easily understand the logical decision behind
combining various datasets into a domain data product. Each data product should
independently drive value and meaning—without data users always needing to join it
with other data products to get to something meaningful.

For example, consider the listener profiles aggregate data product. It serves the
listeners’ personal information, as well as a few derived characteristics such as music
profiles and the cohorts they belong to. The listener profiles can change based on
multiple inputs such as the registration process, subscription changes, or changes
to their listenership behavior or location. Despite having different triggers, all these
triggers change one aggregate entity, the listener profiles, with a single transforma‐
tion logic. Of course, it’s also OK to break this data product further to separate data
products, e.g., listener personal information and listener profiles to get a more
independent life cycle. The former changes because of registrations, and the latter
changes because of listening behavior. I think both of these models are acceptable. I
start with a less granular data product, while respecting the cohesion of the data life
cycle.
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In contrast, if the data product serves two completely different types of data that each
change independently with different life cycles, under two aggregate roots,10 then the
boundary needs to be refined to create two different data products. A pathological
example is a data product called everything we know about listeners that serves
listeners playlists, their devices, their profiles, etc., all in one data product. Each of
these outputs can change independently; hence, they must be converted to different
data products.

Data products are independently meaningful
Does the data product provide meaningful data independently? Do all your data prod‐
uct users need to join and connect the data product with others to use it?

Traditional data warehousing uses database normalization techniques with fact tables
to join many different dimension tables that each keep data about an entity. This
allows a highly flexible query system to cross-correlate data across many dimensions.
This high-effort modeling is time-consuming and can cover only a subset of use
cases.

Data products on the mesh do not intend to design one perfect model optimized for
all possible queries. Data products on the mesh optimize for minimal modeling and
maximum reusability, and there is composition of fit-for-purpose data products only
if needed. Hence, they attempt to provide value—meaningful data—independently.
They replicate information from other data products if needed to avoid unnecessary
joins. This does not replace cross-data-product joins but makes sure in the majority
of scenarios the data product can be useful independently.

Data products boundary Goldilocks zone
The Goldilocks zone for the boundary of a data product—its granularity, the data it
serves, and the transformation it executes—is at the intersection of ease of usability,
ease of maintenance, and business relevance.

The data product output must be usable on its own and deliver value and meaning to
its users. If the data product is bloated, encoding too many facets that can independ‐
ently change, and if it’s hard to understand why and how it changes, it’s time to break
it down to simpler data products.

The data product transformation logic complexity should not inhibit its maintaina‐
bility. It must be easily understood, tested, and maintained. If the transformation of
a data product turns into a complex pipeline with a high rate of change fail ratio, it
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is time to revisit the boundary of it. It’s perhaps time to decouple it into independent
data products.

If the data product does not resemble the reality of the business and has morphed
through aggregation and transformation far from the original business context, it
may have drifted into the land of perfect modeling. In this faraway land, maintenance
cost is increased, and data products are more difficult to understand and use. It’s
time to revisit the reasons behind complex transformation and revert back to the
real-world context.

Data products without users don’t exist
Is the data product used by anyone? Is it providing data for any reports, training any
ML model, or feeding downstream data products? Or is the data product created for
hypothetical use cases that might be needed one day in the future?

There is a temptation for the people who concern themselves with data to decide
up front what data products the organization might need one day. Perhaps fear of
missing out drives the creation of such hypothetical data products. I agree that the
sooner we capture the reality of business digitally, the easier it will be to give future
use cases the opportunity to derive insight from the past. However, the cost of this
up-front investment and lack of knowledge in what we actually need to capture
do not outweigh the benefits. So instead, I suggest following the business-driven
(“Business-Driven Execution” on page 280) execution approach I introduced in
Chapter 15 to discover the use cases first and then rapidly start building the required
data products.

People
Organizational design decisions concerned with people include their roles, their capa‐
bilities, development and training, and recruitment. In this section I’m going to only
address the key distinctive areas that data mesh impacts—new and changing roles
and responsibilities and new development pathways to generate the talent, skills, and
mindsets necessary to implement data mesh.

First, let’s have a quick look at the changing or new roles.

Roles
The introduction of the principle of data as a product and domain ownership intro‐
duces new roles within each domain team such as data product owners who facilitate
the prioritization of data products and their features.

The self-serve data platform puts an emphasis on the role of platform product
owners, who facilitate the platform capabilities offered as internal technical products.
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The federation of governance decision making to domains changes the existing
governance roles such as data governance officer, data stewards, and data custodians.

Ultimately, the decentralization of data ownership to cross-functional domain-
oriented teams shifts the responsibilities and the role of the organization’s head of
data, e.g., chief of data and analytics.

The data product owner role
Data product owners work within a particular domain and are accountable for
the domain’s data products. Depending on the number and complexity of the subdo‐
mains and the data products, there could be one or multiple data product owners.
Data product owners facilitate making decisions around the vision and the roadmap
for the data products, concern themselves with the continuous measurement and
communication of their data consumers’ satisfaction, and help the data product team
improve the quality and richness of their data. They manage and communicate the
life cycle of the domain data products, when to change, revise, and retire data and
schemas. They strike a balance between the competing needs of their data consumers.

Data product owners define, continuously monitor, and refine the success criteria
and business-aligned KPIs of their data products—a set of objective metrics that
measures the performance and success of their data products. They use these metrics
to get observability into the state of their data products and help the team improve
the data product.

Data products’ success, like any other product, is aligned with the satisfaction of the
data consumers. For example, data consumer satisfaction can be measured through
net promoter score—the degree by which the consumers recommend the data prod‐
ucts to others, the decreased lead time for data product consumers to discover and
use the data product successfully, and the growth of users.

The domain data product developer
In order to build and operate the domains’ data products, the app dev team’s roles
need to be extended to include data product developers. Data product developers
work closely with their collaborating application developers in defining the domain
data semantic and mapping data from the application context (data on the inside) to
the data product context (analytical data on the outside). They build and maintain the
transformation logic that generates the desired data as well as the usability traits and
guarantees of their data products.

A wonderful side effect of such a cross-functional collaboration is cross pollination
of different skill sets and the ability to cross-skill existing developers so they become
data product developers.
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The platform product owner
This role is not unique to the data mesh platform and is a must-have for any internal
technical platform. The multiplane platform services are simply products, products
that internal users, data product developers, and consumers use to do their job.
The success of the platform services depends on ease of usability, satisfaction, and
frankly the adoption of the platform services without force. The role of the platform
product owner is to facilitate the prioritization of the platform services to design and
build the experience of the users of the platform. They drive the inception activities
that define how the platform services fit into the overall journey of a data product
developer, consumer, the operation team, governance, etc. A platform product owner
then works closely with the platform architect and the development team in refining
how those experiences are built.

A platform product owner must have a deep knowledge of the users, in this case data
developers, data product owners, etc. Often the platform product owner has been a
power user in the past and has experienced, firsthand, the journeys of data producers
or consumers. They have a reasonable understanding of the landscape of technologies
that they will be using, building, or buying as part of the platform.

Product ownership skills such as user research, product validation, feedback collec‐
tion, A/B testing, etc., are necessary.

Shifting role of the existing data governance office
Today, various data governance functions operate under the data governance office.
The exact structure and roles vary from one organization to another.

Nevertheless, data mesh changes the roles within this office—data steward, data
custodian, members of the data council, etc.

Here are a few examples of changes in the governance roles:

Today, data stewards operate in the central governance team and are in charge
of managing, investigating, and resolving data quality issues for one or multiple
domains. With data mesh, this role is shifted to the domains and becomes part of
a domain, as a data product owner. People currently in this role can either shift to
a domain’s data product owner role or move to the platform as a specialist to help
automate data quality testing, observability, and recovery.

Today, data custodians are often hands-on in charge of day-to-day work with data
sources and maintaining the data. This role is deprecated and shifted to domains as
data product developer role.

The data council, as the highest decision-making body with accountability for poli‐
cies, also shifts to a federated model with representatives from domains.
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These examples are a starting point to move toward automation and federation of
governance, removing synchronous controls and bottlenecks and giving accountabil‐
ity to people who have the power to make changes.

Changing the role of chief data and analytics officer
Today, technology organizations are run by functional executives, such as a chief
data and analytics officer (CDAO), chief technology officer, chief digital officer, etc.
Traditionally, the role of CDAO has been concerned with all things data: accountable
for the enterprise-wide creation, utilization, and governance of data to drive business
value. Many of the CDAOs that I have worked with are responsible for building the
data platform, harvesting and collecting the analytical data, and building many of the
analytical solutions that business demands—dashboards and ML models. In short,
many different responsibilities that require data specialization fall under the CDOA’s
functional organization.

Moving data from a specialized concern to a generalized one, distribution of the data
responsibility to cross-functional domain teams, and diffusion of data expertise all
influence a shift in the role of a CDAO to an enablement role, with close collaborative
relationships with chief digital or technology officers. CDAOs will remain responsible
for areas that are highly specialized. It’s too early to say what highly specialized areas
will evolve and what the role exactly would look like. Nevertheless, organizations
must resolve the conflict between the decentralization of data accountability and the
centralization of data accountability under a CDAO.

Skillset Development
Data mesh strategy requires the diffusion of minimum skill sets required for everyone
involved in digital solution development—applications, services, products—to appre‐
ciate, understand, and use data. Removing the walls of organizational silos between
the data specialists and everyone else is a catalyst for an organic cross-pollination of
skills, language, and understanding.

While creating an organizational structure conducive to learning new skills by osmo‐
sis is a good starting point, organizations must invest in creating and executing an
intentionally designed data literacy program across the board.

In addition to raising the water with increased data education, new career develop‐
ment pathways must be designed for people to step into the new roles and responsi‐
bilities that data mesh introduces.

Education drives democratization
Increasing participation of people in data sharing across the organization with differ‐
ent roles and levels of skills is a common goal of many organizations—referred to as
data democratization. If you follow the root of the word “democratization,” you arrive
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at “dēmos”—the people.” Education increases people’s awareness and their level of
participation. In fact, research shows the level of people’s education directly impacts
the level of democracy at the societal scale,11 but that is a conversation for another
time.

A successful implementation of data mesh depends on participation in data sharing
above and beyond what previous paradigms have expected. It assumes generalist
technologists participate in providing the data and putting it into use. It assumes
that product managers, application developers, and systems designers no longer
externalize the knowledge and responsibility of data.

Data mesh does not expect people to become data specialists, but it does expect them
to become experts in their own data. The platform lowers the degree of specialization
required. It does expect collaborative cross-functional teams, and many generalists
establish the language, mental model, appreciation, and empathy for data and data
use cases. Similarly, it expects that data specialists work alongside and in-stream
with software engineers to pick up software engineering’s evergreen practices when
managing, applying, or sharing data.

An organizational-wide data education program considers multiple dimensions. Here
are a few dimensions to consider:

Everyone
Everyone involved in either building, supporting, or managing digital solutions
must have an awareness of what is good data and how it can be utilized. Learning
about the application of ML—as generative applications, optimization solutions,
recommendation systems, anomaly detection services—applied to the organiza‐
tion’s specific industry increases creativity and the desire to participate. Everyone
learns about data analysis and visualization. Data analysis is simply a new digital
experience enhancing existing digital workflows. The expected outcome of this
education is creating awareness, appreciation, empathy, and curiosity for data.

Executive and decision makers
Executives must deeply understand why data mesh is relevant to the organization
and know its underpinning principles. During the execution of data mesh, they
will be faced with many critical decisions where they need to balance short-term
tactical needs versus strategic ones. A deep understanding of the long-term effect
of data mesh and its short-term deliverables can help them make the right call.

Generalist technologists
Scaling the population of contributors to data sharing, either as data product
developers or data users, requires mastery in a new set of tools. Technically, the
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developers need to be educated on the platform interfaces and services and the
standards and policies that govern the data products. They need to understand
and work within the framework of a continuous delivery of data products. Edu‐
cation on the platform and governance can be an ongoing enablement activity.

Data specialists
Many of the data specialists—data engineers or data scientists—will be joining
the domain cross-functional team. They will work in a stream-aligned team that
delivers an end-to-end outcome. They no longer work on one isolated step. This
means tighter collaboration and integration using software engineering practices
and technologies. The education program must help data specialists learn soft‐
ware engineering practices such as coding, testing, and continuous delivery.

Platform engineers
Data infrastructure engineers must get closer to computation and operational
infrastructure—building and hosting applications—and computation infrastruc‐
ture engineers need to understand the data infrastructure landscape better. Data
mesh demands seamless integration of data and application platforms.

Flexible organizations require flexible people
Data mesh embraces a move from specialized and isolated teams to cross-functional
and collaborative teams. It also depends on the two forcing functions—lowering the
level of data specialization through the platform and raising the level of data literacy.
This is to get the majority generalist technologist population to actively contribute to
data products and solutions. Organizations must design career pathways to close the
knowledge gap between these two groups.

Process
Previously I covered the structure of an organization under the influence of a data
mesh implementation. Now let’s look at the changes to its processes and functions.

Generally, processes fall into two categories, vertical and horizontal. The vertical pro‐
cesses flow decisions or information up and down the organizational hierarchy. For
example, the decisions around budgeting often are centralized by gathering requests
from all departments and centrally prioritized at the top. Horizontal processes, also
called lateral processes, are designed around work streams for an end-to-end out‐
come across organizational boundaries. Most data mesh processes are horizontal. For
example, the delivery of a new data product is a horizontal process.
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So far you have encountered a few key processes involved in data mesh:

Data mesh execution
In Chapter 15, I discussed the overarching process of executing a data mesh
implementation, aligned and driven by the larger data strategy, executed through
evolutionary and incremental business-driven thin slices.

This is modeled after a transformation process that the Digital Transformation
Game Plan12 calls thin slicing, narrow and targeted change processes that cut
through all aspects of the business and tech to identify necessary changes and
impediments. This is a horizontal process.

Data value exchange
The mesh is a network of data providers and consumers that share data products
as a unit of value exchange with minimal friction and interactions. The exchange
is facilitated by the platform. I walked you through a couple of processes involved
in Chapter 10: the data product developer journey and data product consumer
journey. These are horizontal processes.

Global policy definitions
In Chapter 5, I discussed the approach to establishing global policies and stand‐
ards by the federated governance group. This is a vertical process.

Data mesh dynamic equilibrium with feedback processes
In Chapter 5, I introduced removing process controls in favor of automated
feedback loops to maintain the health—dynamic equilibrium—of the mesh. For
example, introduce positive and negative feedback loops to reduce the number
of duplicate and unwanted data products as an alternative to creating a central
control in the data production creation process. These are horizontal processes.

Key Process Changes
Data mesh’s endeavor to create a scale-out system of value generation and value
exchange with data looks for every opportunity to remove bottlenecks, delays, and
unsustainable manual tasks. It looks for opportunities to introduce elements such
as feedback loops and levers, automate them, and reduce the need for centralized
controls.

In short, if you follow the thread of removing bottlenecks, responding rapidly to
change of data, and scaling out the system of data sharing, you will find many
opportunities to improve the data sharing processes unique to your organization.
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Following are a few examples of process changes that occur under the influence of a
data mesh execution.

Devolve organization decision-making structure to domains
Many of the processes that traditionally involved the governance team, such
as data modeling, guaranteeing data quality, verifying data security, etc., are
delegated to the domain.

Automation
Automating the traditional manual processes is a must to scale a data mesh
implementation. Examples of such processes include access to data and verifying
and certifying data quality.

Replace synchronization with automation or distributed consensus
Processes that demand centralized synchronization inhibit scale and agility. Any
time you find yourself faced with one of such processes, find other ways to
achieve the same outcome in a distributed fashion.

For example, you may decide that the process of identifying new data products
and their owners is a decision that the collection of data product owners can
make. You may even imagine this as a meeting of sorts to discuss and identify the
data product team allocation. Such a meeting is a point of synchronization that
can block the progress of the creation, change, or allocation of existing products
at scale.

Alternatively, this synchronous and manual process can be replaced with a set of
global heuristics that a team can use to self-assess product ownership.13 Introduc‐
tion of automated feedback loops and leverage points prune out duplicate data
products over time.14

Recap
What I would like you to take away from this chapter is that executing data mesh
needs a multifaceted organizational change. Iteratively and along with the delivery
of your data mesh thin slices, I encourage you to look at modifying all facets of
organizational design decisions, summarized by Galbraith as strategy, culture, reward,
structure, people and process. Deploy a movement-based organizational change (see
“Change” on page 305), start small and move fast to show value, get buy-in, and
gather momentum toward a sustainable and scaled change.
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Define and communicate the cultural values (see “Values” on page 308) that foster
actions and behavior that are aligned with a data mesh strategy. The good news is that
there is an inherent alignment between humans’ intrinsic motivations (see “Intrinsic
Motivations” on page 311)—mastery, autonomy and purpose—and the tasks required
to implement data mesh.

While the exact organizational structure would vary from one organization to
another, use the templates I offered to design your teams and interaction modes
based on data mesh Team Topologies (see “Data Mesh Team Topologies” on page
314). The boundary of data products will have a direct impact on your core teams,
data product teams. Use the heuristics (see “Discover Data Product Boundaries” on
page 321) that I introduced, refine them, and build new ones for your organization to
create a system for teams to easily self-assess and decide independently.

Introducing new roles, or perhaps shifting existing ones (see “Roles” on page 324),
will be one of the hardest changes you need to make. I briefly discussed some of the
role changes. Be kind to people who are moving to new roles, from the comfort of the
known to the unknown, particularly around existing governance and centralized data
team structures.

I left you with a few key shifts in existing processes (see “Process” on page 329)
such as removing organizational synchronization points and manual processes and
devolving some of the decision-making hierarchies to achieve scale.

No matter what the changes are, nothing is constant. Continuously observe, evaluate,
and change if your team structure, roles, and processes are still getting in the way of
getting value from data at scale.

The only thing left is to congratulate you for getting to the end of this book and wish
you luck and a whole lot of fun in your journey executing data mesh.
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